
Removing Confusion in Locally
Finite Petri Nets

Author
Terts Diepraam
Amsterdam University College

terts.diepraam@gmail.com

Supervisor
Dr. Lorenzo Galeotti

Amsterdam University College

lorenzo.galeotti@gmail.com

Tutor
Dr. Cor Zonneveld
Amsterdam University College

c.zonneveld@auc.nl

Reader
Dr. Yurii Khomskii

Amsterdam University College

Institute for Logic, Language and

Computation

yurii@deds.nl

Major: Sciences

June 3, 2020

9954 words

mailto:terts.diepraam@gmail.com
terts.diepraam@gmail.com
mailto:lorenzo.galeotti@gmail.com
lorenzo.galeotti@gmail.com
mailto:c.zonneveld@auc.nl
c.zonneveld@auc.nl
mailto:yurii@deds.nl
yurii@deds.nl

Abstract

This thesis aims to explore methods for randomising Petri nets. We focus on the
s-cell method by Bruni, Melgratti, and Montanari [5] and the branching cells
method by Abbes and Benveniste [2] that apply to Petri nets with confusion.
Additionally, we implement the s-cell method in a Python program, which can
be found at https://gitlab.com/tertsdiepraam/petrinet. To do so, we
redefine the ⊖ operation and formalise the pruning operations from [5]. The
redefined ⊖ operation might also provide a small first step towards applying the
s-cell method to locally finite Petri nets.

Keywords — true-concurrency, Petri nets, event structures, confusion, structural
branching cells

https://gitlab.com/tertsdiepraam/petrinet

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Relations, Orders and Graphs . 5
2.2 Probability . 7

3 Concurrency 9
3.1 Models of Concurrency . 9
3.2 Concurrency in Physics . 10

4 Petri Nets 11
4.1 Preliminaries on Petri Nets . 11
4.2 Occurrence Nets . 14
4.3 Unfolding . 17

5 Event Structures 19
5.1 Preliminaries on Event Structures 19
5.2 From Petri Nets to Event Structures 21
5.3 Confusion in Event Structures . 21
5.4 Locally Finite Event Structures 23

6 Randomizing Confusion-Free Event Structures 25
6.1 Probabilistic Event Structures . 25
6.2 Confusion in Probabilistic Event Structures 28

7 Branching Cells Method 29
7.1 Branching Cells . 29
7.2 Locally Randomised Event Structures 30
7.3 Markov Nets . 32

8 Structural Branching Cells Method 34
8.1 Persistent Places . 34
8.2 Structural Branching Cells . 35
8.3 Dynamic Petri Nets . 36
8.4 Dependence . 39

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam

CONTENTS

8.5 The Construction . 41
8.6 Attaching Probabilities . 50

9 Conclusion 51

Bibliography 52

Notation 54

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 2

Chapter 1

Introduction

Concurrency theory gained popularity due to the rise of parallelisation in com-
puting and long-distance communication methods. A process is called concur-
rent if the order of some events can be changed without affecting the final state
of the process. Since concurrent events can often be executed in parallel, con-
currency is often used to optimise computer programs. However, the concept of
concurrency applies to more than just computer science. In fact, concurrency
is not an exceptional property; many processes such as chemical reactions and
traffic are concurrent.

Models of concurrency can be distinguished based on whether they use in-
terleaving or true-concurrent semantics. In a true-concurrent model, the events
are only partially ordered. In an interleaving model, the events are totally or-
dered. In this paper, we focus on two models of concurrency: Petri nets and
event structures.

Probability is often used in models for concurrent processes to make the
choices probabilistic which is, for example, useful for simulation and perfor-
mance analysis of a process. Active research is being done to investigate how
probabilistic choices can be added to Petri nets. Ideally, such a model satisfies
the following conditions:

1. the behaviour of the probabilistic model must match the behaviour of
standard Petri nets;

2. equivalent processes must have equal probabilities;

3. the sum of probabilities of all maximal processes should be 1; and

4. the probabilities of executing concurrent events should be independent.

Satisfying the third condition is especially difficult, since it is possible to
construct a system where concurrent events are dependent on each other. When
this is the case, we say that a system has confusion. Otherwise, we say that it
is confusion-free.

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 3

Chapter 1 — Introduction

Stochastic Petri nets are a probabilistic model that uses interleaving seman-
tics [4]. However, this model significantly changes the behaviour of Petri nets.
Hence, this model violates the first condition above [4, p. 6]. A probabilis-
tic model for concurrency using true-concurrent semantics was introduced by
Varacca, Völzer, and Winskel [12]. This model satisfies all conditions above,
but only applies to confusion-free Petri nets. Two other methods for attach-
ing probabilities to Petri nets with confusion using true-concurrent semantics
have been developed: the branching cells method was introduced by Abbes and
Benveniste [2] and the structural branching cells or s-cells method by Bruni,
Melgratti, and Montanari [5]. The first is a dynamic method that removes
confusion by controlling the execution of the Petri net. The second removes
confusion by changing the Petri net statically to a confusion-free net. However,
the method by Bruni, Melgratti, and Montanari [5] applies only to acyclic Petri
nets, while the method by Abbes and Benveniste [2] applies to locally finite
Petri nets, a subclass of Petri nets which allows for “controlled” cycles.

In this paper, we explore the branching cells method and the s-cells method.
Additionally, we have implemented the s-cells method in a Python program,
which required further formalisation of the pruning step of the s-cells method.

This capstone is structured as follows: Chapter 2 treats the mathematical
preliminaries in set theory and probability theory. Chapter 3 details the classes
of models for concurrent processes. Chapters 4 and 5 explain two of these
models, Petri nets and event structures, in depth. Finally, Chapters 6 to 8
explore the methods for attaching probabilities to these models by Varacca,
Völzer, and Winskel [12], Abbes and Benveniste [2] and Bruni, Melgratti, and
Montanari [5], respectively.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 4

Chapter 2

Preliminaries

In this chapter we will introduce the mathematical notions that are used through-
out this paper.

2.1 Relations, Orders and Graphs

For binary relations, we introduce the transitive closure in the standard way.

Definition 2.1 (Transitive closure). Let 𝐹 ⊆ 𝐴×𝐴 be a binary relation on 𝐴.
We define the irreflexive transitive closure 𝐹+as

𝐹0 := 𝐹

𝐹𝑛+1 := 𝐹 ∪ {(𝑥, 𝑦) | ∃𝑧 𝑥𝐹𝑛𝑧𝐹𝑛𝑦}
𝐹+ =

⋃︁
𝑛∈N

𝐹𝑛.

We then define the (reflexive) transitive closure 𝐹 * as

𝐹 * := 𝐹+ ∪ Id where Id := {(𝑥, 𝑥) | 𝑥 ∈ 𝐴}.

This paper uses partial orders extensively, requiring the following notions
and theorems.

Definition 2.2 (Partial order). A pair (𝐴,≤) with a set 𝐴 and a relation
≤⊆ 𝐴×𝐴 is called a partial order if for all 𝑎, 𝑏, 𝑐 ∈ 𝐴:

∙ (Reflexivity) 𝑎 ≤ 𝑎;

∙ (Antisymmetry) 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑎 =⇒ 𝑎 = 𝑏;

∙ (Transitivity) 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 =⇒ 𝑎 ≤ 𝑐.

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 5

Chapter 2 — Preliminaries

Definition 2.3 (Maximal element). Let (𝐴,≤) be a partial order. We say that
an element 𝑎 ∈ 𝐴 is maximal in 𝐴 if

∀𝑥 ∈ 𝐴 𝑎 ≤ 𝑥 =⇒ 𝑎 = 𝑥.

Given a finite subset 𝑋 ⊆ 𝐴, we let max(𝑋) denote the set of maximal elements
of (𝑋,≤).

Proposition 2.1. Let 𝑈 and 𝑉 be finite downwards closed subsets of the partial
order (𝐴,≤). Then we have that

𝑈 = 𝑉 iff max(𝑈) = max(𝑉).

Proof. Trivially, we have that if 𝑈 = 𝑉 then max(𝑈) = max(𝑉).
For the other direction we assume that max(𝑈) = max(𝑉). Without loss of

generality, assume 𝑥 ∈ 𝑈 . We will prove that 𝑥 ∈ 𝑉 . There are 2 cases, either
𝑥 ∈ max(𝑈) or 𝑥 /∈ max(𝑈). If 𝑥 ∈ max(𝑈) then 𝑥 ∈ max(𝑉) and 𝑥 ∈ 𝑉 .
Now, if 𝑥 /∈ max(𝑈) then there is a 𝑦 ∈ max(𝑈) such that 𝑥 ≤ 𝑦 by finiteness
of 𝑈 . Therefore 𝑦 ∈ 𝑉 and 𝑥 ∈ 𝑉 since 𝑉 is downwards closed. Therefore, we
conclude that

max(𝑈) = max(𝑉) =⇒ 𝑈 = 𝑉.

Theorem 2.2 (Zorn’s Lemma). Let (𝐴,≤) be a partial order. Assume that
every totally ordered subset of 𝐴 has an upper bound. Then the set 𝐴 contains
at least one maximal element.

The definition of Petri nets canonically uses a multiset (also known as a bag)
to represent a set that can contain an element multiple times.

Definition 2.4 (Multiset). Call a multiset a mapping 𝑚 : 𝐴 → N for some set
𝐴. We define the elementary binary operations with 𝑚 and 𝑛 multisets on the
set 𝐴:

𝑚 + 𝑛 := {(𝑎,𝑚(𝑎) + 𝑛(𝑎)) | 𝑎 ∈ 𝐴},
𝑚 ∖ 𝑛 := {(𝑎,max(𝑚(𝑎) − 𝑛(𝑎), 0)) | 𝑎 ∈ 𝐴}.

Since multisets behave much like sets, we additionally define the standard set
operations such that multisets behave like regular sets if ∀𝑎 ∈ 𝐴 𝑚(𝑎) ≤ 1 ∧
𝑛(𝑎) ≤ 1:

𝑚 ∪ 𝑛 := 𝑚 + (𝑛 ∖𝑚),

𝑚 ∩ 𝑛 := 𝑚 ∖ (𝑛 ∖𝑚).

The membership, subset and proper subset relations are then defined as:

𝑎 ∈ 𝑚 ⇐⇒ 𝑚(𝑎) > 0,

𝑚 ⊆ 𝑛 ⇐⇒ 𝑚 ∩ 𝑛 = 𝑚,

𝑚 ⊂ 𝑛 ⇐⇒ 𝑚 ⊆ 𝑛 ∧ 𝑛 ̸= 𝑚.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 6

Chapter 2 — Preliminaries

To be able to apply the operations above with a multiset and a normal set 𝑋
as operands, we map 𝑋 to a multiset given by

{(𝑎, 1) | 𝑎 ∈ 𝑋} ∪ {(𝑎, 0) | 𝑎 ∈ 𝐴 ∖𝑋}.

Additionally, we represent multisets as sets possibly containing the identical
elements multiple times.

The definitions above are extended to the case where a multiset 𝑚 can
contain an element infinitely many times, in which case 𝑚 : 𝐴 → N∞, where
N∞ is the set of natural numbers including infinity.

Sometimes, we will look at the graph structures of Petri nets. Therefore, we
introduce the following notions.

Definition 2.5 (Directed graph). A directed graph is a pair (𝒩 , ℰ) where 𝒩
is the set of nodes and ℰ ⊆ 𝒩 ×𝒩 is the set of edges.

Definition 2.6 (Walk, path & cycle). A sequence (𝑥1, . . . , 𝑥𝑛) of nodes in a
directed graph 𝐺 = (𝒩 , ℰ) is called a walk if ∀0 < 𝑖 < 𝑛 (𝑥𝑖, 𝑥𝑖+1) ∈ ℰ . A walk
is called a path if all nodes in the walk are distinct. A walk is called a cycle if
(𝑥1, . . . , 𝑥𝑛−1) is a path and 𝑥1 = 𝑥𝑛.

Definition 2.7 (Strongly connected component). Given a directed graph 𝐺 =
(𝒩 , ℰ), we call a strongly connected component a maximal set of nodes {𝑥𝑖} ⊆ 𝒩
such that there exists a path between any ordered pair of nodes (𝑥𝑖, 𝑥𝑗) with
𝑖 ̸= 𝑗.

2.2 Probability

The definitions of probability in this paper are based on the canonical measure-
theory approach, following the example set by [3].

Definition 2.8 (Measurable space & 𝜎-algebra). Let 𝑈 be a non-empty set.
A set F of subsets of 𝑈 is called a 𝜎-algebra if ∅ ∈ F and F is closed under
complement and countable union. The pair (𝑈,F) is then called a measurable
space. The elements of F are called measurable subsets of (𝑈,F).

Definition 2.9 (Measurable mapping). If (𝑈,F) and (𝑉,G) are measurable
spaces, then a mapping 𝜑 : 𝑈 → 𝑉 is called a measurable mapping if 𝜑-1(𝐴) ∈ F
for every 𝐴 ∈ G. Adopting the terminology from probability theory, measurable
mappings are also called random variables.

Definition 2.10 (Induced 𝜎-algebra). Let (𝑈,F) be a measurable space. For
any measurable subset 𝐴 of 𝑈 there is a measurable space

(︀
𝐴,F𝐴

)︀
, where we

say that F𝐴 is induced by F and is defined by

F𝐴 := {𝐵 ∈ F | 𝐵 ⊆ 𝐴}.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 7

Chapter 2 — Preliminaries

Definition 2.11 (Probability space & probability measure). If (𝑈,F) is a mea-
surable space, then the triple (𝑈,F,P) is said to be a probability space if P is a
non-negative set function P : F → R such that P(∅) = 0 and P(𝑈) = 1 and for
any sequence (𝐴𝑛)𝑛≥0 of pairwise disjoint measurable subsets, we have

P

⎛⎝⋃︁
𝑛≥0

𝐴𝑛

⎞⎠ =
∑︁
𝑛≥0

P(𝐴𝑛).

The map P is then called a probability measure or simply a probability and can
be determined by how it acts on the singletons {𝑥} with 𝑥 ∈ 𝑈 . Therefore, we
write P(𝑥) = P({𝑥}), yielding

∑︀
𝑥∈𝑈 P(𝑥) = 1.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 8

Chapter 3

Concurrency

In this chapter we will present the classes of models for concurrent systems.
Additionally, we treat the application of concurrency in the field of physics.

3.1 Models of Concurrency

There are multiple models of concurrency, each highlighting different character-
istics of concurrent systems. Most of these models take as their atomic element
some indivisible (sequential) change (usually called events, actions, transitions
or symbols) [10]. These changes are then composed into more complex concur-
rent structures by specifying an order of causality between them. This order
of causality in a concurrent system is fundamentally a partial order [7]. If this
partial order is used, we say that true-concurrent or non-interleaving semantics
are used. Alternatively, the events can be totally ordered. In this case we call
the semantics interleaving.

Sassone, Nielsen, and Winskel [10] have introduced three axes along which
to compare models of concurrency. The first axis distinguishes system and
behaviour models. System models have a representation of the state of a sys-
tem, while behaviour models are not concerned with state itself, but only with
the patterns of states. The second axis describes whether the system uses
true-concurrent or interleaving semantics. Finally, the third axis distinguishes
branching time models from linear time models. Branching models have a rep-
resentation of the choices in the system, while linear models do not.

In this paper, Petri nets and event structures will be used as models for
concurrency. In the taxonomy from [10], Petri nets are an example of a system
non-interleaving branching time model [10]. Similarly, event structures are a
behaviour non-interleaving branching time model [10]. Although both can also
be equipped with interleaving semantics.

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 9

Chapter 3 — Concurrency

3.2 Concurrency in Physics

We end the chapter by briefly considering some connections between concur-
rency theory and physics.

The necessity of true-concurrency does not only arise for practical synchro-
nisation reasons, but true-concurrency is in fact a fundamental property of the
universe that follows from the theory of special relativity. The theory of special
relativity is based on two main postulates [6]:

1. the laws of physics are of the same form in all inertial reference frames1;

2. the speed of light in vacuum has the same value 𝑐 in all inertial reference
frames.

The constant speed of light implies that vector addition cannot be used to
add velocities. Instead, Einstein [6] proposed to use Lorentz transformations.
The remarkable property of Lorentz transformations with respect to concurrency
is that it introduces time dilation, effectively stretching time depending on the
velocity of the observer.

Consider two events separated by space 𝑎 and 𝑏, which are simultaneous in
one observer’s frame. If a second observer is moving towards 𝑎, the Lorentz
transformation results in 𝑎 happening before 𝑏 from the perspective of this
observer, in which case they are no longer simultaneous.2 It follows from the
first postulate that there exists no absolute reference frame that can be regarded
as the sole truth. Therefore, these events are fundamentally true-concurrent.

1Inertial means non-accelerating.
2It must be noted that causality cannot be affected by Lorentz transformations.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 10

Chapter 4

Petri Nets

In this section, the basic theory of Petri nets will be introduced. Then, the
concepts of confusion and of persistent places will be discussed. These notions
will have a crucial role in Chapters 7 and 8. Unless otherwise specified, this
chapter follows the definitions and notation from [5].

4.1 Preliminaries on Petri Nets

Petri nets were first introduced by C. A. Petri in 1962 [9] to model concurrent
processes such as chemical processes. Since then, Petri nets have been gener-
alised to describe any kind of concurrent process.

Definition 4.1 (Petri net). A Petri net is a tuple (𝑃, 𝑇, 𝐹) where

∙ 𝑃 is the set of places,

∙ 𝑇 is the set of transitions, which is disjoint from 𝑃 ,

∙ 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is the flow relation.

A marked Petri net is a tuple (𝑃, 𝑇, 𝐹,𝑚), where (𝑃, 𝑇, 𝐹) is a Petri net and
𝑚 is a multiset 𝑚 ∈ N𝑃 , that is, 𝑚 is a mapping from 𝑃 to N. If 𝑝 ∈ 𝑚, then 𝑝
is said to be marked at 𝑚.

Adopting terminology from graph theory, the set 𝑃 ∪ 𝑇 is called the set of
nodes. If 𝑥 is a node of 𝑁 then we write 𝑥 ∈ 𝑁 . Given a node 𝑥 ∈ 𝑁 , we define
the preset ∙𝑥 and postset 𝑥∙ of 𝑥 as

∙𝑥 := {𝑦 | (𝑦, 𝑥) ∈ 𝐹} and 𝑥∙ := {𝑧 | (𝑥, 𝑧) ∈ 𝐹}.
Additionally, we define the initial places ∘𝑁 and the final places 𝑁∘ of the Petri
net 𝑁 as

∘𝑁 := {𝑝 ∈ 𝑃 | ∙𝑝 = ∅} and 𝑁∘ := {𝑝 ∈ 𝑃 | 𝑝∙ = ∅}.
A Petri net 𝑁 ′ = (𝑃 ′, 𝑇 ′, 𝐹 ′) is called a subnet of a Petri net 𝑁 = (𝑃, 𝑇, 𝐹),

written 𝑁 ′ ⊆ 𝑁 if 𝑃 ′ ⊆ 𝑃 ∧ 𝑇 ′ ⊆ 𝑇 ∧ 𝐹 ′ ⊆ 𝐹 .

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 11

Chapter 4 — Petri Nets

Furthermore, we define the causality relation as the transitive closure of the
flow relation:

⪯ := 𝐹 *.

To remove nodes from a Petri net, we define the set difference on a Petri net
𝑁 = (𝑃, 𝑇, 𝐹) as

𝑁 ∖𝑋 = (𝑃 ′, 𝑇 ′, 𝐹 ′),

with

𝑃 ′ = 𝑃 ∖𝑋, 𝑇 ′ = 𝑇 ∖𝑋, 𝐹 ′ = 𝐹 ∩ ((𝑃 ′ × 𝑇 ′) ∪ (𝑇 ′ × 𝑃 ′)).

All operations on Petri nets in this paper are implicitly extended to marked
Petri nets, restricting 𝑚 to the elements of 𝑃 if marked places are removed.

In modelling a concurrent process with a Petri net, one associates a place
with each condition that might hold during the execution process. The state at
a given time in the process is given by the set of places in the marking. The
transitions then represent the ability of the system to change its state from one
marking to another.

Definition 4.2 (Enabling & firing). A transition 𝑡 is enabled at the marking

𝑚, written 𝑚
𝑡−→ if ∙𝑡 ⊆ 𝑚. If a transition is fired, written 𝑚

𝑡−→ 𝑚′, then
𝑚′ = (𝑚∖∙𝑡)+𝑡∙. A finite sequence of firings is called a firing sequence. A firing

sequence 𝑚0
𝑡1−→ . . .

𝑡𝑛−→ 𝑚𝑛 is abbreviated 𝑚0
𝑡1···𝑡𝑛−−−−→ 𝑚𝑛 or 𝑚 −→* 𝑚′. Given

an initial marking, firing sequences can be uniquely identified by a sequence of
transitions.

As a result of these definitions, places can hold any (natural) number of
tokens. A marked Petri net is said to be 1-safe if it is impossible to reach a
marking via a firing sequence where a single place holds two or more tokens. In
this paper, only 1-safe Petri nets are considered.

Let us illustrate the use of Petri nets with a simple example. Consider a
shop with a single shopkeeper 𝑠 and two customers, labelled 𝑎 and 𝑏. Before
they can buy something, the customers have to decide what to buy. When they
are ready to order, they complete the transaction with the shopkeeper, after
which the customers leave the shop.

In this model, each customer has 3 possible states: “thinking” (about what
to buy), “ready” (to order) and “left” (the shop). The shopkeeper can be
either “free” or “busy” helping a customer. Initially, each customer is in the
“thinking” state and the shopkeeper is in the “free” state. When the customer
decide what they want, they transition from “thinking” to “ready”. When
the shopkeeper and a customer are “free” and “ready”, respectively, they
transition to “busy”. After an arbitrary amount of time, the transaction is
completed and the customer’s state is set to “done” and the shopkeeper returns
to being “free”.

The marked Petri net corresponding to this process is shown in Figure 4.1.
In particular, Figure 4.1a shows the initial state of the process. Figures 4.1b

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 12

Chapter 4 — Petri Nets

to 4.1d then show the evolution of the markings when customer 𝑎 makes a deci-
sion, is helped by the shopkeeper 𝑠, and leaves the shop. Places are represented
by circles, transitions are represented with rectangles and the flow relation is
represented by edges between the nodes. Places contain a number of dots cor-
responding to their marking.

𝑎 thinking

decide

𝑎 ready

𝑎 left

𝑏 thinking

decide

𝑏 ready

𝑏 left

𝑠 free

begin

𝑠 helping 𝑎

done

begin

𝑠 helping 𝑏

done

(a) The net with the initial marking and descriptions for the places and transitions.

𝑡1 𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

(b) The net after firing 𝑡1.

𝑡1 𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

(c) The net after firing 𝑡1
and 𝑡3.

𝑡1 𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

(d) The net after firing 𝑡1,
𝑡3 and 𝑡4.

Figure 4.1: The Petri net corresponding to the shop example. The net starts out
with the initial marking in Figure 4.1a. Figures 4.1b to 4.1d show the dynamics
of the system, after the transitions 𝑡1, 𝑡3 and 𝑡4 are fired, respectively.

As defined above, a transition can only be fired when all the places in its
preset are marked. When a transition is fired, the places in the preset are
removed from the marking and the places in the postset are added. If transitions
share one or more places in their preset, a choice between the transitions has to
made. As we will see, choices will play a central role in this paper.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 13

Chapter 4 — Petri Nets

Definition 4.3 (Conflict). Two transitions, 𝑡1 and 𝑡2, are in direct conflict,
written 𝑡1 #0 𝑡2, if

𝑡1 ̸= 𝑡2 ∧ ∙𝑡1 ∩ ∙𝑡2 ̸= ∅.
Additionally, two nodes 𝑥, 𝑦 ∈ 𝑁 are in conflict, denoted by 𝑥# 𝑦, if any of
their “ancestors” are conflict. Formally, # is defined by

∀𝑥, 𝑦 ∈ 𝑁 𝑥# 𝑦 iff ∃𝑒 ⪯ 𝑥 ∃𝑒′ ⪯ 𝑦 𝑒#0 𝑒
′.

It is possible that a node 𝑥 has nodes in its preset which are in conflict with
each other. By Definition 4.3, this implies 𝑥#𝑥. In this case, we say that 𝑥 is
in conflict with itself and that there is auto-conflict in the net.

We define the previously discussed concept of confusion in the context of
Petri nets.

Definition 4.4 (Confusion). A 1-safe marked net has confusion if there ex-
ists a reachable marking 𝑚 and transitions 𝑡, 𝑢, 𝑣 such that the symmetric or
asymmetric case holds.

1. In the symmetric case,

(a) 𝑡, 𝑢, 𝑣 are enabled at 𝑚,

(b) ∙𝑡 ∩ ∙𝑢 ̸= ∅ ≠ ∙𝑢 ∩ ∙𝑣 and

(c) ∙𝑡 ∩ ∙𝑣 = ∅.

2. In the asymmetric case,

(a) 𝑡 and 𝑣 are enabled at 𝑚,

(b) 𝑢 is not enabled at 𝑚 but becomes enabled after the firing of 𝑡,

(c) ∙𝑡 ∩ ∙𝑣 = ∅ and ∙𝑢 ∩ ∙𝑣 ̸= ∅.

When a net does not have confusion, it is said to be confusion-free.

Consider the net in Figure 4.2a. If 𝑡 is fired, 𝑢 is no longer enabled, removing
the choice between 𝑢 and 𝑣. This net has symmetric confusion. Similarly, if 𝑡 is
fired in the net in Figure 4.2b, 𝑢 becomes enabled and a choice between 𝑢 and
𝑣 is added. This is an example of asymmetric confusion.

4.2 Occurrence Nets

An occurrence net is an acyclic Petri net without auto-conflict. They will be
instrumental in connecting Petri nets to event structures in Chapter 5.

Definition 4.5 (Occurrence net). A Petri net 𝑁 = (𝑃, 𝑇, 𝐹) is called an occur-
rence net if it satisfies the following properties:

∙ (𝑃 ∪ 𝑇,⪯) is a partial order;

∙ for every 𝑥 ∈ 𝑃 ∪ 𝑇 , the set {𝑦 ∈ 𝑃 ∪ 𝑇 | 𝑦 ⪯ 𝑥} is finite;

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 14

Chapter 4 — Petri Nets

𝑡 𝑢 𝑣

(a) Symmetric confusion.

𝑡

𝑢 𝑣

(b) Asymmetric confusion.

Figure 4.2: The two simple cases of confusion.

∙ for every 𝑝 ∈ 𝑃 , |∙𝑝| ≤ 1; and

∙ # is irreflexive, meaning that there is no auto-conflict.

The definition above is illustrated in Figures 4.3 and 4.4. Figure 4.3 shows
nets that are not occurrence nets, since they are not acyclic, have places with a
preset of size larger than 1 or contain nodes which are in conflict with themselves.
In contrast, Figure 4.4 shows examples of nets that are occurrence nets.

To identify the interleaving traces of Petri nets, we introduce equivalence
classes called processes.

Definition 4.6 (Deterministic occurrence net). An occurrence net is called
deterministic if there is no conflict.

Definition 4.7 (Process). A deterministic nonsequential process or process is
a mapping 𝜋 : 𝒟 → 𝑁 from a deterministic occurrence net 𝒟 to a Petri net
𝑁 that preserves preset and postset and such that 𝜋(∘𝒟) is the initial marking
of 𝑁 . Firing sequences in 𝑁 are equivalent if they are images of maximal
firing sequences in the same deterministic occurrence net 𝒟. A process is called
maximal if its maximal firing sequences are maximal in 𝑁 .

For example in the net in Figure 4.1, the firing sequences

(𝑡2, 𝑡1, 𝑡3, 𝑡4),

(𝑡1, 𝑡2, 𝑡3, 𝑡4),

(𝑡1, 𝑡3, 𝑡2, 𝑡4),

(𝑡1, 𝑡3, 𝑡4, 𝑡2),

are all considered to be equivalent and belong to the equivalence class given by
the deterministic occurrence net 𝑈 = (𝑃 ′, 𝑇 ′, 𝐹 ′) with

𝑇 ′ = {𝑡1, 𝑡2, 𝑡3, 𝑡4},
𝑃 ′ =

⋃︁
𝑡∈𝑇 ′

(∙𝑡 ∪ 𝑡∙),

𝐹 ′ = 𝐹 ∩ ((𝑃 ′ × 𝑇 ′) ∪ (𝑃 ′ × 𝑇 ′)).

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 15

Chapter 4 — Petri Nets

(a) A net with a cycle. (b) A net with a place
such that |∙𝑝| > 1.

(c) A net with auto-
conflict.

Figure 4.3: Nets that are not occurrence nets since they each do not satisfy one
of the necessary properties. Adapted from [1].

(a) A tree-like net is an occurrence net. (b) Concurrent processes are possible
as long as conflicting processes are not
joined.

Figure 4.4: Examples of occurrence nets. Adapted from [1].

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 16

Chapter 4 — Petri Nets

4.3 Unfolding

A 1-safe marked Petri net can be unfolded into an occurrence net while preserv-
ing the possible firing sequences. This occurrence net can be used as a canonical
representation of the dynamics of the net; when two 1-safe nets have the same
behaviour, their occurrence nets will be equal [13, Thm. 4.7]. Unfolding is also
the first step in converting a Petri net into an event structure, as will be dis-
cussed in Section 5.2. The construction of the unfolding detailed below is based
on [8].

The unfolding is constructed using an equivalence relation ≡ on firing se-
quences. To define ≡, we take any firing sequence

𝜎 = 𝑚0
𝑡0···𝑡𝑛−−−−→ 𝑚𝑛+1,

where 𝑚0 is the initial marking. The equivalence relation ≡ will be defined from
two auxiliary relations. First, we say that 𝜎 ≡(1) 𝜎

′ if there is 𝑖 ≤ 𝑛 − 1 such
that

𝜎′ = 𝑚0
𝑡0···𝑡𝑖−2−−−−−→ 𝑚𝑖−1

𝑡𝑖−→ 𝑚′
𝑖

𝑡𝑖−1−−−→ 𝑚𝑖+1
𝑡𝑖+1···𝑡𝑛−−−−−→ 𝑚𝑛+1,

that is, the positions of 𝑡𝑖 and 𝑡𝑖−1 are swapped, changing the marking 𝑚𝑖 to
some other marking 𝑚′

𝑖. Second, we say that 𝜎 ≡(2) 𝜎
′′ if

𝜎′′ = 𝑚0
𝑡0···𝑡𝑛−2−−−−−→ 𝑚𝑛−1

𝑡𝑛−→ 𝑚′
𝑛+1,

where 𝑡𝑛−1 is removed from the firing sequence, changing the marking 𝑚𝑛+1

to some other marking 𝑚′
𝑛+1. We then define ≡ as the reflexive symmetrical

transitive closure of ≡(1) and ≡(2):

≡ :=
(︁
≡(1) ∪ ≡(2) ∪ ≡−1

(2)

)︁*
.

We denote the set of equivalence classes of ≡ with 𝑆. Note that all firing
sequences in an equivalence class 𝑠 ∈ 𝑆 of ≡ have the same final transition which
we identify as 𝑡𝑠. Additionally, given firing sequences

𝜎 = 𝑚0
𝑡0···𝑡𝑛−1−−−−−→ 𝑚𝑛

𝑡𝑛···𝑡𝑘−1−−−−−→ 𝑚𝑘
𝑡𝑘···𝑡𝑙−1−−−−−→ 𝑚𝑙,

𝜎′ = 𝑚𝑛
𝑡𝑛···𝑡𝑘−1−−−−−→ 𝑚𝑘,

abusing notation, we freely write 𝜎 as

𝜎 = 𝑚0
𝑡0···𝑡𝑛−1−−−−−→ 𝜎′ 𝑡𝑘···𝑡𝑙−1−−−−−→ 𝑚𝑙.

The unfolding of a 1-safe Petri net (𝑃, 𝑇, 𝐹) is then an occurrence net 𝑈 =

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 17

Chapter 4 — Petri Nets

(𝑃 ′, 𝑇 ′, 𝐹 ′), where

𝑇 ′ = 𝑆,

𝑃 ′ = {(𝑒, 𝑝) | 𝑠 ∈ 𝑆 ∧ 𝑝 ∈ 𝑡∙𝑠} ∪ {(∅, 𝑝) | 𝑝 ∈ 𝑚},
𝐹 ′ = {(𝑠, (𝑠, 𝑝′)) | (𝑠, 𝑝′) ∈ 𝑃 ′}

∪
{︁

(𝑝′, 𝑠)
⃒⃒⃒
𝑝′ = (𝑠′, 𝑝) ∧ 𝑠 = 𝑠′

𝑡𝑛−→ 𝑚𝑛+1 ∧ 𝑝 ∈ ∙𝑡𝑠

}︁
∪
{︁

(𝑝′, 𝑠)
⃒⃒⃒
𝑝′ = (∅, 𝑝) ∧ 𝑠 = 𝑚0

𝑡0−→ 𝑚1 ∧ 𝑝 ∈ ∙𝑡0

}︁
.

A simple Petri net and its unfolding are illustrated in Figure 4.5, Only a
prefix of the unfolding is shown since 𝑡1 can be fired any number of times in the
original net.

𝑎 𝑏

𝑡1 𝑡2 𝑡3

𝑐 𝑑

(a) A net containing a loop.

𝑎 𝑏

𝑡1 𝑡2 𝑡3

𝑎 𝑐

𝑑
𝑡1 𝑡2

𝑎 𝑐

...
...

(b) The prefix of the unfolding of the net.

Figure 4.5: A cyclic net and its unfolding. Adapted from [1].

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 18

Chapter 5

Event Structures

Event structures are used as an intermediate structure in the process of attaching
probabilities to Petri nets in the methods by Varacca, Völzer, and Winskel [12]
and Abbes and Benveniste [2]. This chapter discusses event structures, their
connection to Petri nets and the concept of local finiteness.

5.1 Preliminaries on Event Structures

Definition 5.1 (Event Structure). An event structure is a triple

ℰ = (𝐸,2,#)

where 𝐸 is the set of events, 2 is the causality relation and # is the conflict
relation. An event structure ℰ must satisfy the following properties:

∙ the set 𝐸 is at most countable;

∙ the tuple (𝐸,2) is a partial order such that for any event 𝑒 the set
{𝑒′ ∈ 𝐸 | 𝑒′ 2 𝑒} is finite and

∙ the relation # is symmetric and irreflexive, and satisfies

∀𝑥, 𝑦, 𝑧 ∈ 𝐸 (𝑥# 𝑦 ∧ 𝑦 2 𝑧) =⇒ 𝑥# 𝑧.

Definition 5.2 (Prefix & Configuration). A subset 𝐴 ⊆ 𝐸 is called a prefix if
it is downwards closed, that is, if

∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐴 𝑥 2 𝑦 =⇒ 𝑥 ∈ 𝐴.

Additionally, a prefix 𝑣 is called a configuration if it is conflict-free:

#∩ (𝑣 × 𝑣) = ∅.

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 19

Chapter 5 — Event Structures

∙

��

𝑢

∙𝑣 ∙ 𝑤

Figure 5.1: An example of an event structure. It corresponds to the asymmetric
confusion Petri net in Figure 4.2b.

A configuration 𝑣 represents a valid execution of the system, since each event
in 𝑣 only depends on events in 𝑣 and no two events in conflict can be in the
same configuration. Therefore, there is a valid order in which the events in 𝑣
can be executed.

We say that two configurations 𝑥, 𝑦 are compatible if 𝑥∪𝑦 is a configuration.
We denote the set of finite configurations with 𝒱ℰ . The elements of 𝒱ℰ can be
partially ordered based on the events they include. Additionally, we define the
set of maximal configurations Ωℰ . By applying Zorn’s lemma on the partial
order (𝒱ℰ ,⊆), we conclude that this set is non-empty [1].

A subset of events 𝐹 ⊆ 𝐸 induces a sub-event structure (𝐹,2𝐹 ,#𝐹) with

2𝐹 =2 ∩ (𝐹 × 𝐹), #𝐹 = #∩ (𝐹 × 𝐹).

To denote the finite and maximal configurations of this event structure,
abusing notation we will freely write 𝒱𝐹 and Ω𝐹 , respectively, without explicitly
stating the event structure.

Given an event structure ℰ = (𝐸,2,#), The smallest configuration contain-
ing the element 𝑒 ∈ 𝐸 is denoted

[𝑒] := {𝑒′ ∈ 𝐸 | 𝑒′ 2 𝑒}.

Building on this definition, the smallest configuration enabling 𝑒 is denoted

[𝑒[:= [𝑒] ∖ {𝑒}.

Definition 5.3 (Immediate conflict). The immediate conflict relation #𝜇 on
𝐸 is defined as

∀𝑒, 𝑒′ ∈ 𝐸 𝑒#𝜇 𝑒
′ iff ([𝑒] × [𝑒′]) ∩ # = {(𝑒, 𝑒′)}.

Immediate conflict is analogous to direct conflict in Petri nets, as it describes
where choices must be made in the execution of the event structure.

An example of the graphical representation of event structures is given in
Figure 5.1. Events are represented by a dot (∙). Causality is given by the tran-
sitive reflexive closure of the arrows (//) and immediate conflict is denoted
by wavy lines ().

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 20

Chapter 5 — Event Structures

Definition 5.4 (Future of a configuration). Let ℰ = (𝐸,2,#) be an event
structure. Call the future of a configuration 𝑣 the event structure ℰ𝑣 induced
by

𝐸𝑣 := {𝑒 ∈ 𝐸 ∖ 𝑣 | ∀𝑒′ ∈ 𝑣 ¬(𝑒# 𝑒′)},
which is the set of events not in conflict with any of the events in the configu-
ration and not in the configuration itself.

5.2 From Petri Nets to Event Structures

Petri nets and event structures are both models for concurrent processes. How-
ever, event structures lack a representation of the state of a system, since the
only atomic elements are events, which are analogous to transitions. Neverthe-
less, Petri nets can be mapped to event structures by using occurrence nets as
an intermediate step.

Let 𝑁 = (𝑃, 𝑇, 𝐹) be a 1-safe Petri net. As shown by Winskel [13, Thm. 4.7],
𝑁 has an unfolding (𝑈, 𝜌), where 𝑈 = (𝑃 ′, 𝑇 ′, 𝐹 ′) is an occurrence net. Nielsen,
Plotkin, and Winskel [8] have defined the map that converts an occurrence net
to an event structure:

𝜉(𝑈) := (𝑇 ′, 𝐹 * ∩ (𝑇 ′ × 𝑇 ′), #𝑈 ∩ (𝑇 ′ × 𝑇 ′)).

Figure 5.2a shows the unfolding of the Petri net in Figure 4.1. The event
structure obtained by applying 𝜉 to the unfolding is shown in Figure 5.2b.

5.3 Confusion in Event Structures

The notion of confusion can also be translated from the theory of Petri nets to
event structures. This will be useful for some of the definitions later on.

In the symmetric case of confusion, there exist three transitions 𝑡, 𝑢 and 𝑣
which we will directly map to three events 𝑡, 𝑢 and 𝑣. Since ∙𝑡∩ ∙𝑢 ̸= ∅ ≠ ∙𝑢∩𝑣
in the Petri net model, we conclude that 𝑡#𝜇 𝑢 and 𝑢#𝜇 𝑣. Furthermore, we
see that ¬(𝑡#𝜇 𝑣), since ∙𝑡 ∩ ∙𝑣 = ∅. The condition for symmetric confusion is
then

∃𝑡, 𝑢, 𝑣 ∈ 𝐸 𝑡#𝜇 𝑢 ∧ 𝑢#𝜇 𝑣 ∧ ¬(𝑡#𝜇 𝑣).

In other words, the immediate conflict relation must be transitive for the Petri
net to be confusion-free.

Using similar reasoning as before, we can see that there are two events 𝑢
and 𝑣 such that 𝑢#𝜇 𝑣 in the asymmetric case of confusion. Furthermore,
there is some event 𝑡 that is maximal in [𝑢[and 𝑡 /∈ [𝑣[. By Proposition 2.1,
the configurations [𝑢[and [𝑣[are equal if and only if max([𝑢[) = max([𝑣[).
Therefore, the condition for asymmetric confusion is

∃𝑢, 𝑣 ∈ 𝐸 𝑢#𝜇 𝑣 ∧ [𝑢[̸= [𝑣[.

The corresponding condition for an event structure to be confusion-free is then
that ∀𝑢, 𝑣 ∈ 𝐸 𝑢#𝜇 𝑣 =⇒ [𝑢[= [𝑣[.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 21

Chapter 5 — Event Structures

𝑡1

𝑡3

𝑡4

𝑡3

𝑡4

𝑡2

𝑡5

𝑡6

𝑡5

𝑡6

(a) The occurrence net corresponding to
the Petri net in Figure 4.1.

∙

��

��

𝑡1 ∙

��

		

𝑡2

∙

��

𝑡3 ∙

��

𝑡5

∙

''

𝑡4
∙

ww

𝑡6

∙

��

𝑡3 ∙

��

𝑡5

∙𝑡4 ∙ 𝑡6

(b) The event structure corresponding to
the occurrence net in Figure 5.2a.

Figure 5.2: The occurrence net and event structure corresponding to the Petri
net in Figure 4.1.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 22

Chapter 5 — Event Structures

∙ ∙ ∙

(a) Symmetric confusion

∙

��∙ ∙

(b) Asymmetric confusion

Figure 5.3: The minimal confused event structures.

Theorem 5.1 (Confusion). An event structure ℰ = (𝐸,2,#) has confusion if
at least one of the following conditions holds:

1. (Symmetric) ∃𝑡, 𝑢, 𝑣 ∈ 𝐸 𝑡#𝜇 𝑢 ∧ 𝑢#𝜇 𝑣 ∧ ¬(𝑡#𝜇 𝑣);

2. (Asymmetric) ∃𝑢, 𝑣 ∈ 𝐸 𝑢#𝜇 𝑣 ∧ [𝑢[̸= [𝑣[.

Examples of confused event structures are shown in Figure 5.3, which are
direct translations from the Petri nets in Figure 4.2.

5.4 Locally Finite Event Structures

The concept of locally finite event structures was introduced by Abbes and
Benveniste [2] to describe the class of event structures, and by extension Petri
nets, that their method applies to. Intuitively, an event structure is locally finite
if for every event 𝑒 there is a finite number of events that directly or indirectly
influence whether 𝑒 can be fired.

Definition 5.5 (Stopping prefix). A prefix 𝐵 of ℰ is called stopping if it is
closed under immediate conflict.

Definition 5.6 (Locally finite). An event structure ℰ = (𝐸,2,#) is called lo-
cally finite if for each event 𝑒 ∈ ℰ , there exists a finite stopping prefix containing
𝑒.

A Petri net is called locally finite if the event structure 𝜉(𝑈) corresponding
to its unfolding 𝑈 is locally finite.

The difference between a locally finite and a non-locally finite event structure
is illustrated in Figure 5.4. In Figure 5.4b, the right-most event is in immediate
conflict with infinitely many events in the middle column. Any finite prefix
containing that event is therefore not stopping since it would not be closed
under immediate conflict. In Figure 5.4a, every event is only in immediate
conflict with two other events.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 23

Chapter 5 — Event Structures

∙

�� �� ''

∙ ∙

∙

�� �� ''

∙ ∙

∙
...

∙
...

∙
...

(a) A locally finite event structure.

∙

�� ��

∙ ∙

∙

�� ��

∙

∙
...

∙
...

(b) A non-locally finite event structure.

Figure 5.4: Two similar event structures: one locally finite and one non-locally
finite.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 24

Chapter 6

Randomizing
Confusion-Free Event
Structures

This chapter discusses a method of attaching local probabilities to confusion-
free event structures introduced by Varacca, Völzer, and Winskel [12]. Then, we
attempt to apply the same method to confused event structures to understand
why the method fails. The limitations of this method motivate the branching
cells method described in Chapter 7.

6.1 Probabilistic Event Structures

With the definitions of event structures in place, probabilistic event structures
with independence can be defined. This is done in the way described in [12].
The idea here is to define probability to local parts of the event structure that
generate a sensible probability distribution for the configurations. We will first
only consider confusion-free event structures.

To simplify some upcoming definitions, the concept of a covering is intro-
duced.

Definition 6.1 (Covering). Let 𝑥, 𝑥′ ∈ 𝒱ℰ be two configurations. We say that
𝑥 covers 𝑥′ if there exists an event 𝑒 /∈ 𝑥′ such that 𝑥 = 𝑥′ ∪ {𝑒}. A covering
at 𝑥 is a maximal non-empty set of pairwise incompatible configurations that
cover 𝑥.

The previously mentioned “sensible” probability for the configurations must
satisfy three conditions: normality, conservation and independence. Such a
probability distribution is called a configuration valuation with independence.

Definition 6.2 (Configuration valuation with independence). A mapping 𝑣 :
𝒱ℰ → [0, 1] is called a configuration valuation with independence if it satisfies

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 25

Chapter 6 — Randomizing Confusion-Free Event Structures

1. (Normality) 𝑣(∅) = 1;

2. (Conservation) if 𝐶 is a covering at 𝑥, then
∑︀

𝑐∈𝐶 𝑣(𝑐) = 𝑣(𝑥);

3. (Independence) if 𝑥 and 𝑦 are compatible then 𝑣(𝑥)·𝑣(𝑦) = 𝑣(𝑥∪𝑦)·𝑣(𝑥∩𝑦).

The first condition simply states that the empty configuration must always
occur, since it is the starting point of every configuration. The second condition
implies that the sum of the probabilities of the maximal configurations is 1.
Finally, the condition of independence states that the valuations for compatible
configurations must be probabilistically independent.

To create a probabilistic event structure with independence, we attach a con-
figuration valuation with independence to an event structure.

Definition 6.3 (Probabilistic event structure with independence). A proba-
bilistic event structure with independence is a pair (ℰ , 𝑣) with a confusion-free
event structure ℰ and a configuration valuation 𝑣.

Now we define local probability distributions to match the global probability
distribution defined above. To this end, cells are defined to represent the sets
of events where choices have to be made. The local probability distributions of
the event structure will be attached to each of these cells.

Definition 6.4 (Cell). A cell is a maximal non-empty set 𝑐 of events such that
𝑒, 𝑒′ ∈ 𝑐 implies 𝑒#𝜇 𝑒

′ and [𝑒[= [𝑒′[.

Varacca, Völzer, and Winskel [12, Definition 2.3] give a different yet equiv-
alent definition of confusion-freeness based on cells. Here, this definition is
treated as a theorem following from Theorem 5.1.

Theorem 6.1 (Confusion-free). An event structure is confusion-free if and only
if its cells are closed under immediate conflict.

Proof. Let ℰ = (𝐸,≤,#) be an event structure. We first prove that the cells
of an event structure with confusion are not closed under immediate conflict.
Consider the symmetric case of confusion, such that

∃𝑡, 𝑢, 𝑣 ∈ 𝐸 𝑡#𝜇 𝑢 ∧ 𝑢#𝜇 𝑣 ∧ ¬(𝑡#𝜇 𝑣). (6.1)

Therefore, a cell 𝑐 containing 𝑡 cannot contain 𝑣 since ¬(𝑡#𝜇 𝑣). Hence, 𝑐 is not
closed under #𝜇.

In the asymmetric case of confusion, we have

∃𝑢, 𝑣 ∈ 𝐸 𝑢#𝜇 𝑣 ∧ [𝑢[̸= [𝑣[. (6.2)

Therefore, a cell 𝑐 containing 𝑢 cannot contain 𝑣, since [𝑢[̸= [𝑣[. Hence, 𝑐 is
not closed under #𝜇.

Now we prove that the existence of a cell which is not closed under #𝜇

implies that the net has confusions, we assume that there exists a cell 𝑐 that
is not closed under #𝜇. Then, there must exist two events 𝑡 and 𝑢 such that

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 26

Chapter 6 — Randomizing Confusion-Free Event Structures

𝑡#𝜇 𝑢 with 𝑡 ∈ 𝑐 and 𝑢 /∈ 𝑐. Therefore, one of two conditions must hold:
∃𝑥 ∈ 𝑐 ¬(𝑥#𝜇 𝑢) or ∃𝑥 ∈ 𝑐 [𝑥[̸= [𝑢[. In the first case, Equation (6.1) holds,
therefore the net is symmetrically confused.

Assume the first condition does not hold, so ∀𝑥 ∈ 𝑐 𝑥#𝜇 𝑢. Now the second
condition must hold, therefore we conclude ∃𝑥 ∈ 𝑐 𝑥#𝜇 𝑢∧ [𝑥[̸= [𝑢[. Therefore
Equation (6.2) holds and the net is asymmetrically confused.

A cell valuation then attaches a probability to each of the choices in the cell.

Definition 6.5 (Cell valuation). A cell valuation on a confusion-free event
structure ℰ = (𝐸,2,#) is a mapping 𝑝 : 𝐸 → [0, 1] such that for every cell 𝑐,
we have

∑︀
𝑥∈𝑐 𝑝(𝑥) = 1.

These local probabilities then give rise to a configuration valuation by mul-
tiplying the probabilities of the events in the configurations.

Proposition 6.2 (Varacca, Völzer, and Winskel [12, Prop. 2.8]). Let 𝑝 be a
cell valuation and 𝑣 : 𝒱ℰ → [0, 1] be mapping given by 𝑣(𝑥) =

∏︀
𝑒∈𝑥 𝑝(𝑒).

Then 𝑣 satisfies normality, conservation and independence. Therefore, 𝑣 is a
configuration valuation with independence.

Proposition 6.3 (Varacca, Völzer, and Winskel [12, Prop. 2.11]). Let 𝑣 be a
configuration valuation with independence. Then there exists a cell valuation 𝑝
such that 𝑣(𝑐) =

∏︀
𝑒∈𝑥 𝑝(𝑒).

As an example of a cell valuation, consider the net in Figure 6.1. To create
a valid cell valuation for this event structure, the probabilities for the events in
each cell must add up to 1. For example, we can attach the probabilities given
in the table in Figure 6.1. To determine the configuration valuation we then
multiply the probabilities of the events in the configuration. For example, the
configuration {𝑎, 𝑑} has the valuation

𝑣({𝑎, 𝑑}) = 𝑝(𝑎) · 𝑝(𝑑) =
3

4
· 1

2
=

3

8
.

The only covering for this configuration then consists of the configurations
{𝑎, 𝑑, 𝑒} and {𝑎, 𝑑, 𝑓}. The valuation of these configurations are

𝑣({𝑎, 𝑑, 𝑒}) =
1

8
and 𝑣({𝑎, 𝑑, 𝑓}) =

2

8
,

which indeed add up to 𝑣({𝑎, 𝑑}), as required by the condition of conservation.
Furthermore, if we take the compatible configurations 𝑣({𝑎, 𝑓}) and 𝑣({𝑎, 𝑐}),
we have that

𝑣({𝑎, 𝑓}) · 𝑣({𝑎, 𝑐}) =
3

4
· 2

3
· 3

4
· 1

2
=

3

16
and

𝑣({𝑎, 𝑐} ∪ {𝑎, 𝑓}) · 𝑣({𝑎, 𝑐} ∩ {𝑎, 𝑓}) = 𝑣({𝑎, 𝑐, 𝑓}) · 𝑣({𝑎})

=
3

4
· 2

3
· 1

2
· 3

4
=

3

16
,

as required by the condition of independence.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 27

Chapter 6 — Randomizing Confusion-Free Event Structures

∙

����

𝑎
∙

��

𝑏
∙

��

𝑐
∙
𝑑

∙
𝑒

∙
𝑓

∙
𝑔

𝑥 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑝(𝑥) 3
4

1
4

1
2

1
2

1
3

2
3 1

Figure 6.1: Confusion-free net with cells represented as dashed rectangles and
an example of a cell valuation for this net.

6.2 Confusion in Probabilistic Event Structures

The approach discussed in the previous section works well for confusion-free
events structures, but the case of confusion still has to be discussed.

Consider the nets in Figure 6.2. For the symmetric case of confusion, the
cells overlap, meaning that the probabilities on the left and right event must
be equal to each other. While possibly inconvenient, this does not directly
pose a problem. Instead, the problem is that the condition of conservation is
not satisfied. Assume that the events have the non-zero valuations 𝑝(𝑡), 𝑝(𝑢)
and 𝑝(𝑣) and consider the configuration {𝑡} with the configuration valuation
𝑣({𝑡}) = 𝑝(𝑡). The only configuration in the covering at {𝑡} is {𝑡, 𝑣}. This
configuration has a valuation given by 𝑣({𝑡, 𝑣}) = 𝑝(𝑡) · 𝑝(𝑣). Therefore, we
conclude that 𝑣({𝑡}) > 𝑣({𝑡, 𝑣}), meaning that the conservation condition is
not satisfied.

In the asymmetric case, we note that 𝑝(𝑡) = 𝑝(𝑢) = 𝑝(𝑣) = 1, since all cells
consist of a single event. Furthermore, the covering of the configuration {𝑡} is
{{𝑡, 𝑢}, {𝑡, 𝑣}}. The sum of the valuations for the configurations in this covering
is then

𝑣({𝑡, 𝑢}) + 𝑣({𝑡, 𝑣}) = 𝑝(𝑡) · 𝑝(𝑢) + 𝑝(𝑡) · 𝑝(𝑣) = 2,

which violates the conservation condition since 𝑣({𝑡, 𝑢}) + 𝑣({𝑡, 𝑣}) > 𝑣({𝑡}).

∙
𝑡

∙
𝑢

∙
𝑣

(a) Symmetric confusion.

∙

��

𝑡

∙𝑢 ∙ 𝑣

(b) Asymmetric confusion.

Figure 6.2: Cells of event structures with confusion

We conclude that the method by [12] does not work for nets with confusion
because the cells are not closed under immediate conflict. To remedy this, a
new type of cells needs to be defined that are closed under immediate conflict
when the net has confusion. This approach is discussed in the next chapter.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 28

Chapter 7

Branching Cells Method

In this chapter, we will discuss branching cells and how they are used to create
probabilistic event structures with confusion. This approach was first introduced
by Abbes [1], however, this chapter follows the definitions and notation from [2].

The method described in this chapter requires the following assumptions [2]:

1. For every event 𝑒, the configuration [𝑒] is finite.

2. For every 𝑣 ∈ 𝒱ℰ , the set min2(𝐸𝑣) contains finitely many events.

3. ℰ is locally finite.

7.1 Branching Cells

The notion of a stopping prefix (see Definition 5.5) is used to define some pre-
liminaries for branching cells.

Definition 7.1 (Stopped configuration). A configuration 𝑣 of ℰ is said to be
stopped if there is a stopping prefix 𝐵 such that 𝑣 ∈ Ω𝐵 .

A stopped configuration represents a configuration which resolves all conflict
up to a certain point in the execution.

Definition 7.2 (Recursively stopped configuration). A configuration 𝑣 of ℰ is
said to be recursively stopped if there exists a finite non-decreasing sequence
(𝑣𝑛)0≤𝑛≤𝑁 of configurations, where 𝑣0 = ∅, 𝑣𝑁 = 𝑣 and for 𝑛 < 𝑁 , we have
that 𝑣𝑛+1 ∖ 𝑣𝑛 is a finite stopped configuration of the future ℰ𝑣𝑛 of 𝑣𝑛. The set
of recursively stopped configurations of ℰ is denoted 𝒲ℰ .

A recursively stopped configuration is similar to a stopped configuration, but
at each step, it takes the future of the net into account. Consider for example
the event structure in Figure 7.1. If 𝑎 is fired, then the conflict between 𝑐
and 𝑒 is resolved because 𝑑 is not in the future of the configuration {𝑎}. The
configuration {𝑎, 𝑐} is not stopped, since it is not maximal in the stopping prefix

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 29

Chapter 7 — Branching Cells Method

{𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, however, it is recursively stopped since {𝑎} is stopped in the initial
event structure and {𝑐} is stopped in ℰ{𝑎}.

∙
𝑎

∙

��

𝑏

∙
𝑐

∙
𝑑

∙
𝑒

Figure 7.1: Firing 𝑎 resolves the conflict between 𝑐 and 𝑒, separating them into
two disjoint stopping prefixes. The configuration {𝑎, 𝑐} is therefore recursively
stopped, but not stopped. Adapted from [2].

As a final preliminary for branching cells, we define an initial stopping prefix
to represent a prefix that cannot be made smaller while remaining a stopping
prefix.

Definition 7.3 (Initial stopping prefix). A stopping prefix 𝐵 is said to be initial
if ∅ is the only stopping prefix strictly contained in 𝐵.

Definition 7.4 (Branching cell). For 𝑣 ∈ 𝒲ℰ a recursively stopped configura-
tion, an initial stopping prefix of ℰ𝑣 is called a branching cell. We denote with
𝛿(𝑣) the set of branching cells that are initial prefixes of ℰ𝑣.

A branching cell is therefore an initial stopping prefix of the event structure
that is still left after firing the configuration 𝑣. This means that it is dynamically
determined during the execution of the event structure.

In contrast with the cells from Definition 6.4, branching cells are only defined
as prefixes of a future of an event structure. Furthermore, branching cells are
always closed under conflict by definition of a stopping prefix.

7.2 Locally Randomised Event Structures

To be able to use branching cells to attach probabilities to event structures,
a generalisation of the probabilistic event structure with independence from
Definition 6.3 is needed.

The main difference between this approach and the approach with inde-
pendence is that this approach is only concerned with making sure that the
probabilities for the maximal configurations are correct. This allows us to de-
fine the probability on the choices in branching cells instead of cells and deal
with confusion correctly.

The analogue of the covering (see Definition 6.1) in this model is the shadow.
The shadow of a configuration 𝑣 represents the set of maximal configurations
that are compatible with 𝑣.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 30

Chapter 7 — Branching Cells Method

Definition 7.5 (Shadow). Let ℰ be an event structure and 𝑣 a configuration
of ℰ . We define the shadow of 𝑣 as a subset 𝒮(𝑣) of the set of maximal config-
urations Ωℰ , given by

𝒮(𝑣) := {𝜔 ∈ Ωℰ | 𝑣 ⊆ 𝜔}.

Let Sℰ be 𝜎-algebra of Ωℰ , defined as the 𝜎-algebra generated by the set of
shadows 𝒮(𝑣), with 𝑣 ranging over the finite configurations of ℰ .

Definition 7.6 (Probabilistic event structure). A probabilistic event structure
is a pair (ℰ ,P) where ℰ is an event structure and P is a probability on the space
(Ωℰ ,Sℰ).

Since the probabilities are only defined for the maximal configurations, we
define a likelihood for the other configurations.

Definition 7.7 (Likelihood). For a probabilistic event structure, the likelihood
of P is defined as the real-valued function 𝑞 : 𝒱ℰ → R defined as

∀𝑣 ∈ 𝒱ℰ 𝑞(𝑣) = P(𝒮(𝑣)),

where 𝒱ℰ is the set of configurations of ℰ as usual.

Now we can define locally randomised event structures, where probabilities
are attached to the maximal configurations of each branching cell. This proba-
bility is local and therefore analogous to a cell valuation (see Definition 6.5).

Definition 7.8 (Locally randomized event structure). A locally randomised
event structure is a pair

(︀
ℰ , (𝑝𝑥)𝑥∈𝑋

)︀
, where 𝑋 is the set of branching cells

of ℰ , and for each 𝑥 ∈ 𝑋, 𝑝𝑥 is a probability over (Ω𝑥,S𝑥), the maximal
configurations in the sub-event structure induced by 𝑥.

To connect the locally randomised event structure to the probabilistic event
structure, we define the covering map. This map represents the set of branching
cells that are part of the execution of a configuration. Note that this map
serves a different purpose than the covering defined in the previous chapter (see
Definition 6.1).

Definition 7.9 (Covering). Call the covering map of an event structure ℰ , the
map ∆(𝑣) for 𝑣 ∈ 𝒱ℰ and

∆(𝑣) := ∆(𝑣) ∖ 𝛿(𝑣),

∆(𝑣) := {𝑥 ∈ 𝛿(𝑣′) | 𝑣′ ∈ 𝒲, 𝑣′ ⊆ 𝑣}.

Theorem 7.1 (Abbes and Benveniste [2, Thm. 5]). Let
(︀
ℰ , (𝑝𝑥)𝑥∈𝑋

)︀
be a lo-

cally randomised event structure. Then there exists a unique probabilistic event
structure (ℰ ,P) such that, for every stopping prefix 𝐵:

∀𝑣 ∈ Ω𝐵 , P(𝒮(𝑣)) =
∏︁

𝑥∈Δ(𝑣)

𝑝𝑥(𝑣 ∩ 𝑥).

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 31

Chapter 7 — Branching Cells Method

Theorem 7.1 is a generalisation of Proposition 6.2 to event structures with
confusion.

To construct a locally randomised event structure from a probabilistic event
structure, we construct the probabilities (𝑝𝑥)𝑥∈𝑋 from P. Given a branching
cell 𝑥 ∈ 𝑋 and 𝜔𝑥 ∈ Ω𝑥, we do this as follows:

𝑝𝑥(𝜔𝑥) :=
P
(︀{︀

𝜔 ∈ Ωℰ
⃒⃒
𝑥 ∈ ∆(𝜔), 𝜔 ∩ 𝑥 = 𝜔𝑥

}︀)︀
P
(︀{︀

𝜔 ∈ Ωℰ
⃒⃒
𝑥 ∈ ∆(𝜔)

}︀)︀ . (7.1)

However, this definition is only correct when P is a distributed probability.

Definition 7.10 (Thin prefix). Let 𝜉 be a subset of 𝛿(∅). We call a prefix 𝐵
of ℰ thin if it is of the form

⋃︀
𝑥∈𝜉 𝑥. We denote a thin prefix as 𝐵𝜉.

Definition 7.11 (Probabilistic future). For a finite configuration 𝑣, the proba-
bilistic future (ℰ𝑣,P𝑣) is defined as

P𝑣(·) :=
1

𝑞(𝑣)
P(·),

with 𝑞(𝑣) = P(𝒮(𝑣)) as in Definition 7.7. The likelihood associated with this
probabilistic future is

𝑞𝑣(𝜔) =
𝑞(𝑣 ∪ 𝜔)

𝑞(𝑣)
,

where 𝜔 is a finite configuration of ℰ𝑣.

Definition 7.12 (Distributed probability). We call a probability P distributed
if for each recursively stopped configuration 𝑣 and each thin prefix 𝐵𝑣

𝜉 in ℰ𝑣, we
have

∀𝜔 ∈ Ω𝐵𝑣
𝜉

𝑞𝑣(𝜔) =
∏︁
𝑥∈𝜉

𝑝𝑥(𝜔 ∩ 𝑥).

Theorem 7.2 (Abbes [1, Ch. 4, Thm. IV-2.2]). Every probabilistic event struc-
ture (ℰ ,P) with a distributed probability induces a locally randomised event struc-
ture with probability (𝑝𝑥)𝑥∈𝑋 by Equation (7.1). Applying Theorem 7.1 then
gives back P.

This theorem is a counterpart of Proposition 6.3 for the branching cell ap-
proach. Theorems 7.1 and 7.2 imply that probabilistic event structures with a
distributed probability and locally randomised event structures are equivalent.

7.3 Markov Nets

So far, we focused on probabilistic event structures. In this section we will briefly
discuss the framework presented in this chapter can be used to randomise Petri
nets.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 32

Chapter 7 — Branching Cells Method

Abbes and Benveniste [2] have proposed to call the randomised Petri nets
obtained from locally randomised event structures Markov nets since they pro-
vide a concurrent generalisation of discrete Markov chains. However, the focus
here is to treat Markov nets only in as far as they are relevant to randomisation
of Petri nets.

The general approach of Markov nets is to map a locally finite Petri net
𝑁 to an event structure and attach a probability distribution to each of the
isomorphism classes of the branching cells, called dynamic clusters. The proba-
bilities on the isomorphism classes then act as probabilities on the execution of
the Markov net.

Definition 7.13 (Dynamic cluster). An isomorphism class of branching cells
is called a dynamic cluster of 𝑁 . We denote by Σ the (finite) set of dynamic
clusters. Dynamic clusters are denoted by the boldface symbol s.

Definition 7.14 (Markov net). A Markov net is a pair
(︀
𝑁, (𝑝s)s∈Σ

)︀
, where 𝑁

is a locally finite 1-safe Petri net and 𝑝s is a probability on the finite set Ωs for
every s ∈ Σ.

By doing this, confusion is not removed from the net, but rather the exe-
cution of the net is governed by the probability distributions on the dynamic
clusters. The drawback of this approach is that the execution of the net must
be computed dynamically during the execution of the net and is dependent on
the current marking.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 33

Chapter 8

Structural Branching Cells
Method

A novel method of removing confusion was introduced by Bruni, Melgratti, and
Montanari [5], which we will refer to as the s-cells method. The difference with
the method by Abbes and Benveniste is that this method is static rather than
dynamic: instead of altering the execution order by computing event structures,
the net itself is altered.

This chapter first discusses the preliminaries for the construction in Sec-
tions 8.1 to 8.4. The construction itself is detailed in Section 8.5. Finally,
randomisation of the final net is explored in Section 8.6. This chapter follows
the definitions and notation in [5], except for the section on dependence and the
details on pruning.

8.1 Persistent Places

Persistent places are places that stay marked forever when they are initially
marked. In the construction, these places will represent the fact that a corre-
sponding place cannot be marked. The persistency is necessary because the fact
that a place will not be marked will hold true for the rest of the execution.

To accommodate for persistency, there must be a distinction between normal
places and persistent places. Therefore, the set of places is split into the set of
normal places 𝑃 and the set of persistent places P. The Petri net is then given
by (S, 𝑇, 𝐹), where S := 𝑃 ∪ P. The definition of a marked net is extended
such that the marking is a multiset 𝑚 ∈ N𝑃

∞ with ∀𝑝 ∈ 𝑃 𝑚(𝑝) ∈ N and
∀p ∈ P 𝑚(p) ∈ {0,∞}. To ensure that each persistent place is filled with ∞
when it is marked, the postset of a transition 𝑡 is a multiset with (𝑡∙)(p) = ∞
if (𝑡,p) ∈ 𝐹 for any p ∈ P.

A marked Petri net (𝑃, 𝑇, 𝐹,𝑚0) is said to be 1-∞-safe if all reachable mark-
ings 𝑚 satisfy that 𝑚(𝑝) ∈ {0, 1} for all 𝑝 ∈ 𝑃 and 𝑚(p) ∈ {0,∞} for all p ∈ P.

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 34

Chapter 8 — Structural Branching Cells Method

Graphically, persistent places will be represented by having a double border
and they will contain a single token if 𝑚(p) = ∞.

8.2 Structural Branching Cells

The s-cells method uses a variation on the branching cells by Abbes and Ben-
veniste, called structural branching cells or s-cells. Intuitively, an s-cell repre-
sents a locus of choice: a set of transitions that form mutually exclusive firing
sequences. Bruni, Melgratti, and Montanari [5], define s-cells with the help of
three new relations:

Pre := 𝐹 ∩ (𝑃 × 𝑇),

⊑ :=
(︀
⪯ ∪Pre

-1
)︀*
,

↔ := {(𝑥, 𝑦) | 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥}.

Definition 8.1 (S-cell). Given a finite occurrence net 𝑁 = (𝑃, 𝑇, 𝐹), the s-
cell [𝑡] assigned to transition 𝑡 is the equivalence class of 𝑡 with respect to the
equivalence relation ↔. Given an s-cell C of 𝑁 , we denote with 𝑁C the net
𝑁 restricted to C such that the nodes are in C ∪ ⋃︀

𝑡∈C 𝑡∙. We write ∘C and
C∘ for ∘𝑁C and 𝑁∘

C respectively. The set of s-cells in a Petri net is given by
bc(𝑁) := {[𝑡] | 𝑡 ∈ 𝑇}.

A transaction 𝜃 of 𝑁C is denoted 𝜃 : C. A transaction 𝜃 is uniquely deter-
mined by its set of transitions. Therefore, we will identify transactions with the
set of transitions.

To see how this definition works, consider the net in Figure 8.1. Each dashed
region in this figure represents an s-cell. To determine the s-cell C1 = [𝑡3], we
first consider the place 𝑐 in the preset of 𝑡3. Since (𝑐, 𝑡3) ∈ Pre, we conclude that
(𝑡3, 𝑐) ∈ Pre

-1
, which implies by definition of @ that 𝑡3 ⊑ 𝑐. Additionally, we see

that 𝑐 ⪯ 𝑡3, therefore 𝑐 ⊑ 𝑡3. Finally, we get that 𝑡3 ↔ 𝑐. So 𝑐 belongs to C1.
Because ⊑ is defined as the transitive closure of ⪯ ∪Pre

-1
, a similar argument is

made for the inclusion of 𝑡4, by noting that 𝑐 ⪯ 𝑡4 and (𝑡4, 𝑐) ∈ Pre
-1

. Using the
same reasoning, the place 𝑑 and transition 𝑡5 are added are added to C1 as well.
Although 𝑡1 ⪯ 𝑑, the transition 𝑡1 is not added to the net since (𝑑, 𝑡1) /∈ Pre

-1
.

Note that s-cells are closed under direct conflict, since #0 ⊆↔. Additionally,
s-cells contain transitions that are causally dependent on each other. Consider
C2 in Figure 8.1. This s-cell must be considered a single locus of choice, since
the choices for the places 𝑏 and 𝑓 are dependent on each other. If 𝑡2 is fired first,
𝑡6 becomes enabled and a choice between 𝑡6 and 𝑡7 must be made. Conversely,
if 𝑡7 is fired first, a choice must be made between 𝑡2 and 𝑡8.

Starting the computation of the s-cell from 𝑡1, the same arguments as before
apply to conclude that

{𝑡1, 𝑡2, 𝑡8, 𝑎, 𝑏, 𝑔} ⊆ [𝑡1].

The fact that the place 𝑒 belongs to this s-cell follows from

𝑡2 ⪯ 𝑒 and 𝑒 ⪯ 𝑡6 ∧ (𝑡6, 𝑓) ∈ Pre
-1 ∧ 𝑓 ⪯ 𝑡8 ∧ (𝑡8, 𝑏)Pre

-1 ∧ 𝑏 ⪯ 𝑡2,

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 35

Chapter 8 — Structural Branching Cells Method

implying 𝑡2 ⊑ 𝑒 and 𝑒 ⊑ 𝑡2, respectively. Repeating the same argument for the
other nodes gives

[𝑡1] = {𝑡1, 𝑡2, 𝑡6, 𝑡7, 𝑡8, 𝑎, 𝑏, 𝑒, 𝑓, 𝑔}.

𝑎 𝑏

𝑐 𝑑 𝑒 𝑓

𝑔

𝑡1 𝑡2

𝑡3 𝑡4 𝑡5 𝑡6 𝑡7

𝑡8

C1

C2

Figure 8.1: A Petri net with two s-cells represented by regions with a dashed
border.

From a graph theoretic perspective, s-cells can be defined as strongly con-
nected components of a directed graph. Indeed, consider the graph 𝐺 = (𝑃 ∪
𝑇, 𝐹 ∪ Pre

-1
). From elementary set theory, we have(︀

⪯ ∪Pre
-1
)︀*

=
(︀
𝐹 ∪ Pre

-1
)︀*
,

and we further note that the existence of a path in a graph with edges 𝐹 ∪Pre
-1

is equivalent to the transitive closure of 𝐹 ∪ Pre
-1

. Therefore, the strongly con-
nected components of 𝐺 are the s-cells. This connection is important because
it shows that established algorithms for computing strongly connected compo-
nents, such as the algorithm by Tarjan [11], can be used to identify s-cells.

8.3 Dynamic Petri Nets

The s-cells method also relies on the concept of dynamic Petri nets. These are
nets that can grow during the execution. Conceptually, each transition 𝑡 is given
a (possibly empty) set of transitions that are added to the net when 𝑡 is fired.
Dynamic Petri nets are not strictly necessary for the construction, but they are
used as a convenient intermediate step.

Figure 8.2 shows an example of a dynamic Petri net. Initially, the transition
𝑡2 cannot be fired (Figure 8.2a), indicated by the dashed border. Only after 𝑡3
is fired, 𝑡3 is activated and can be fired (Figure 8.2b).

Definition 8.2 (Dynamic transition). A dynamic transition is a pair

𝑡 = (𝑆,𝐷),

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 36

Chapter 8 — Structural Branching Cells Method

𝑎 𝑏

𝑡1 𝑡2 𝑡3

𝑐 𝑑 𝑒

(a) The initial net 𝐷0. The transition 𝑡2
is not initially available to be fired.

𝑎 𝑏

𝑡1 𝑡2 𝑡3

𝑐 𝑑 𝑒

𝑡2

(b) The net 𝐷1 after firing 𝑡3. The tran-
sition 𝑡2 has been activated.

Figure 8.2: The execution of a dynamic transition in a dynamic Petri net.
Transitions that have not been added to the net yet are shown with a dashed
border and can not be fired. The arrow between the transitions 𝑡3 and 𝑡2
represents the fact that 𝑡3 activates 𝑡2.

where 𝑆 is a set of places called the preset and 𝐷 = (𝑇,𝑚) is called the postset.
Here, 𝑇 should be interpreted as the set of transitions added to the net and
𝑚 ∈ NS

∞ as the multiset of tokens added to the marking of the net after firing
𝑡, which is analogous to the postset in a static Petri net. In this case, we say
that 𝑡 activates the transitions in 𝑇 . We alternatively write the transition 𝑡 as

𝑡 = 𝑆 → 𝐷.

As with static transitions, we denote the preset 𝑆 and postset 𝐷 of a dynamic
transition with ∙𝑡 and 𝑡∙, respectively.

Definition 8.3 (Dynamic Petri net). A dynamic Petri net is defined as a pair
𝐷 = (𝑇,𝑚), where 𝑇 is the set of currently available dynamic transitions and
𝑚 ∈ NS

∞ is the marking. For every (𝑆,𝐷′) ∈ 𝑇 , the postset 𝐷′ must also be a
dynamic Petri net.

Given a dynamic Petri net 𝐷 = (𝑇, 𝑏), a dynamic transition 𝑡 = 𝑆 →
(𝑇𝑡,𝑚𝑡) ∈ 𝑇 is said to be enabled if 𝑚𝑡 ⊆ 𝑚. When the transition is fired,
the result is a new dynamic Petri net 𝑁 ′ = (𝑇 ′,𝑚′), with 𝑇 ′ = 𝑇 ∪ 𝑇𝑡 and
𝑚′ = (𝑚 ∖ 𝑆) + 𝑚𝑡.

Definition 8.4 (From static to dynamic). A normal, static transition 𝑡static
with ∙𝑡static = 𝑚1 and 𝑡∙static = 𝑚2 is equivalent to the transition 𝑚1 → (∅,𝑚2)
in a dynamic Petri net. For a Petri net 𝑁 = (𝑃, 𝑇, 𝐹,𝑚), we therefore define an
equivalent dynamic Petri net

dyn(𝑁) = ({∙𝑡 → (∅, 𝑡∙) | 𝑡 ∈ 𝑇},𝑚).

Consider the dynamic Petri net in Figure 8.2, where transitions with a
dashed border are not activated. The transitions in this net are:

𝑡1 = {𝑎} −→ (∅, {𝑐}),

𝑡2 = {𝑎} −→ (∅, {𝑑}),

𝑡3 = {𝑏} −→ ({𝑡2}, {𝑒}).

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 37

Chapter 8 — Structural Branching Cells Method

The initial net, shown in Figure 8.2a is given by

𝐷0 = (𝑇0,𝑚0) = ({𝑡1, 𝑡3}, {𝑎, 𝑏}).

After firing 𝑡3, the transition 𝑡2 is activated, and the net becomes

𝐷1 = (𝑇0 ∪ {𝑡2}, ((𝑚0 ∖ {𝑏}) ∪ {𝑒}))

= ({𝑡1, 𝑡2, 𝑡3}, {𝑎, 𝑒}),

which is shown in Figure 8.2b. The other transitions can then be fired like they
could in a normal Petri net.

Using the fact that the postset of each dynamic transition must be a dynamic
Petri net according to Definition 8.3, the set of dynamic Petri nets over the set
of places S is defined below.

Definition 8.5 (Set of dynamic Petri nets). The set dn(S) is defined as

dn0(S) = {dyn(𝑁) | 𝑁 is a Petri net with places S},
dn𝑛+1(S) =

{︀
(𝑇,𝑚)

⃒⃒
𝑇 ⊆ 2S × dn𝑛(S) ∧ 𝑇 finite ∧𝑚 ∈ NS

∞
}︀
,

dn(S) =
⋃︁
𝑛∈N

dn𝑛(S).

A dynamic Petri net is converted into a static Petri net using persistent
places. The intuition is that whenever a transition is activated by another, a
persistent place is put in between these transitions. More precisely, a persistent
place is added representing whether a transition is activated. However, the per-
sistent places attached to transitions that are initially activated in the dynamic
net can be removed or “pruned” without changing the firing sequences of the
net. For example, the static net corresponding to the dynamic net in Figure 8.2
is shown in Figure 8.3a, along with the pruned version in Figure 8.3b.

Definition 8.6 (From dynamic to static). Given 𝐷 = (𝑇, 𝑏) ∈ dn(S), the
corresponding p-net L𝐷M is defined as

L𝐷M :=
(︀
S ∪PT(𝐷), T(𝐷), 𝐹, 𝑏 ∪ 𝑏𝑇

)︀
,

where

∙ T(𝐷) = 𝑇 ∪⋃︀
𝑡∈𝑇 T(𝑡∙) is the set of transitions in the dynamic net;

∙ PT(𝐷) = {p𝑡 | 𝑡 ∈ T(𝐷)} is a set containing a persistent place for each
transition; and

∙ 𝐹 is such that for any 𝑡 = 𝑆 → (𝑇 ′, 𝑏′) ∈ T(𝐷) we have 𝑡 : ∙𝑡 ∪ {p𝑡} →
𝑏′ ∪ 𝑏𝑇 ′ .

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 38

Chapter 8 — Structural Branching Cells Method

𝑡1 𝑡2 𝑡3

𝑡1 𝑡2
𝑡3

(a) The static Petri net corresponding to
the dynamic net in Figure 8.2.

𝑡1 𝑡2 𝑡3

(b) The pruned version of the static net
in Figure 8.3a.

Figure 8.3: Static net corresponding to the dynamic net in Figure 8.2.

8.4 Dependence

The s-cells method additionally uses the ⊖ operation. Given a Petri net 𝑁 and
a place 𝑝, the expression 𝑁 ⊖ 𝑝 represents the net 𝑁 without the place 𝑝 and
the nodes that are causally dependent on it. We define this operation with a
binary relation representing dependence between the nodes of a Petri net.

Definition 8.7 (Dependence). We define the relation ▷ by recursion as follows:

▷0 := Id

▷𝑛+1 := ▷𝑛 ∪ {(𝑝, 𝑥) ∈ 𝑃 × (𝑃 ∪ 𝑇) | ∙𝑝 ̸= ∅ ∧ ∀𝑡 ∈ ∙𝑝 𝑡 ▷𝑛 𝑥}
∪ {(𝑡, 𝑥) ∈ 𝑇 × (𝑃 ∪ 𝑇) | ∃𝑝 ∈ ∙𝑡 𝑝 ▷𝑛 𝑥}

▷ :=
⋃︁
𝑛∈N

▷𝑛,

where Id = {(𝑥, 𝑥) | 𝑥 ∈ 𝑃 ∪ 𝑇}. Given nodes 𝑥, 𝑦 ∈ 𝑃 ∪ 𝑇 , we say that 𝑥 is
dependent on 𝑦 if 𝑥 ▷ 𝑦.

Note that the condition ∙𝑝 ̸= ∅ is added to account for the vacuous truth
of universal quantification, since places should not be dependent on nodes they
are not connected to.

If a transition 𝑡 is dependent on 𝑝, then 𝑡 can only be fired if 𝑝 is marked at
some point during the execution of the net. It can therefore not be fired when
𝑝 is removed from the net. If a place 𝑞 is dependent on 𝑝 it can only be marked
if 𝑝 is marked at some point during the execution, meaning that the removal of
𝑝 would make it impossible to mark 𝑞.

Definition 8.8 (Removal of dependence). We denote with 𝑁 ⊖ 𝑝 the net 𝑁
with the nodes dependent on the place 𝑝 ∈ 𝑃 removed. This is given by

𝑁 ⊖ 𝑝 := 𝑁 ∖ {𝑛 ∈ 𝑃 ∪ 𝑇 | 𝑛 ▷ 𝑝}.
Proposition 8.1. For a finite acyclic Petri net 𝑁 and a place 𝑝 ∈ ∘𝑁 , the net
𝑁 ⊖ 𝑝 is the smallest subnet of 𝑁 closed under the following rules:

𝑞 ∈ ∘𝑁 ∖ {𝑝}
𝑞 ∈ 𝑁 ⊖ 𝑝

,
𝑡 ∈ 𝑁 ∙𝑡 ⊆ 𝑁 ⊖ 𝑝

𝑡 ∈ 𝑁 ⊖ 𝑝
,

𝑡 ∈ 𝑁 ⊖ 𝑝 𝑞 ∈ 𝑡∙

𝑞 ∈ 𝑁 ⊖ 𝑝
.

In particular, our definition of ⊖ coincides with the definition given in [5].

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 39

Chapter 8 — Structural Branching Cells Method

Proof. First, we prove that 𝑁 ⊖ 𝑝 is closed under the rules. Let 𝑞 ∈ ∘𝑁 ∖ {𝑝} be
an initial place. By definition of ∘𝑁 , the preset of 𝑞 is then empty. Therefore,
we have that ¬∃𝑛 ∈ N (∙𝑞 ̸= ∅ ∧ ∀𝑡 ∈ ∙𝑞 𝑡 ▷𝑛 𝑝). By definition of ▷ this implies
that ¬(𝑞 ▷ 𝑝) and we conclude that 𝑞 ∈ 𝑁 ⊖ 𝑝.

Now let 𝑡 ∈ 𝑁 be a transition and ∙𝑡 ⊆ 𝑁 ⊖ 𝑝. This implies ∀𝑞 ∈ ∙𝑡 𝑞 ∈
𝑁 ⊖ 𝑝. Hence, we have that ∀𝑞 ∈ ∙𝑡 ¬(𝑞 ▷ 𝑝). Since ▷ = ∪𝑛∈N ▷𝑛, this implies
∀𝑞 ∈ ∙𝑡 ¬∃𝑛 ∈ N 𝑞 ▷𝑛 𝑝. Rewriting this gives ¬∃𝑛 ∈ N ∃𝑞 ∈ ∙𝑡 𝑞 ▷𝑛 𝑝.
Therefore, there is no 𝑛 such that ∃𝑞 ∈ ∙𝑡 𝑞 ▷𝑛 𝑝 holds. So by definition of ▷, we
have ¬(𝑡 ▷ 𝑝) and 𝑡 ∈ 𝑁 ⊖ 𝑝.

Now let 𝑞 ∈ 𝑁 ∖ ∘𝑁 be a non-initial place with a 𝑡 ∈ ∙𝑞 such that 𝑡 ∈ 𝑁 ⊖ 𝑝.
This implies that ¬(𝑡 ▷ 𝑝) and, again by definition of ▷, we have ¬∃𝑛 ∈ N 𝑡 ▷𝑛 𝑝.
Hence, we have that ¬∃𝑛 ∈ N ∀𝑡 ∈ ∙𝑞 𝑡 ▷𝑛 𝑝. Therefore, there is no 𝑛 such
that ∙𝑝 ̸= ∅ ∧ ∀𝑡 ∈ ∙𝑞 𝑡 ▷𝑛 𝑝 holds and we have ¬(𝑞 ▷ 𝑝). Finally, this implies
𝑞 ∈ 𝑁 ⊖ 𝑝.

We conclude that 𝑁 ⊖ 𝑝 is closed under the rules.
Now we show that if 𝑁 ′ ⊆ 𝑁 is a Petri net closed under the rules then

𝑁 ⊖ 𝑝 ⊆ 𝑁 ′. We assume towards a contradiction that there is some 𝑥0 such
that 𝑥0 ∈ 𝑁 ⊖ 𝑝 and 𝑥0 /∈ 𝑁 ′. We will construct an infinite path in the directed
graph induced by the flow relation.

First note that 𝑥𝑜 /∈ ∘𝑁 , since 𝑝 /∈ 𝑁⊖ and ∘𝑁 ∖ {𝑝} ⊆ 𝑁 ′ because 𝑁 ′ is
closed under the rules. We then have two cases: 𝑥0 is a non-initial place or a
transition.

Consider the first case. Since 𝑁 ′ is closed under the rules, we have that
∀𝑡 ∈ ∙𝑥0 𝑡 /∈ 𝑁 ′. Furthermore, if we assume towards a contradiction that ∀𝑡 ∈
∙𝑥0 𝑡 /∈ 𝑁⊖𝑝, then we get that ∀𝑡 ∈ ∙𝑥0 𝑡 ▷ 𝑝 and ∀𝑡 ∈ ∙𝑥0 ∃𝑛 ∈ N 𝑡 ▷𝑛 𝑝. Since
𝑁 is finite, ∙𝑥 is finite. Therefore, there is an 𝑛 ∈ N such that ∀𝑡 ∈ ∙𝑥0 𝑡 ▷𝑛 𝑝.
Furthermore, since 𝑥0 /∈ ∘𝑁 , we have that ∙𝑥0 ̸= ∅. Therefore, there is an 𝑛 ∈ N
where the condition ∙𝑥0 ̸= ∅ ∧ ∀𝑡 ∈ ∙𝑥0 𝑡 ▷𝑛 𝑝 holds and we have that 𝑥0 ▷ 𝑝
and 𝑥0 /∈ 𝑁 ⊖ 𝑝, contradicting the assumption that 𝑥0 ∈ 𝑁 ⊖ 𝑝. Therefore we
conclude that ∃𝑡 ∈ ∙𝑥0 𝑡 ∈ 𝑁⊖𝑝. We let 𝑥1 be a transition such that 𝑥1 ∈ 𝑁⊖𝑝
and 𝑥1 /∈ 𝑁 ′.

In the second case, we must have that ∙𝑥0 * 𝑁 ′ since 𝑁 is closed under
the rules. We assume towards a contradiction that ∙𝑥0 * 𝑁 ⊖ 𝑝. We get
∃𝑞 ∈ ∙𝑥0 𝑞 /∈ 𝑁 ⊖ 𝑝, which by definition of ⊖ implies that ∃𝑞 ∈ ∙𝑥0 𝑞 ▷ 𝑛. By
definition of ▷ we then have that ∃𝑞 ∈ ∙𝑥0 ∃𝑛 ∈ N 𝑞 ▷𝑛 𝑝. Rewriting then gives
∃𝑛 ∈ N ∃𝑞 ∈ ∙𝑥0 𝑞 ▷𝑛 𝑝. Since there is an 𝑛 ∈ N such that ∃𝑞 ∈ ∙𝑥0 𝑞 ▷𝑛 𝑝
we conclude that 𝑥0 ▷ 𝑝 and 𝑥0 /∈ 𝑁 ⊖ 𝑝, contradicting the assumption that
𝑥0 ∈ 𝑁 ⊖ 𝑝. Therefore, we conclude that ∙𝑥0 ⊆ 𝑁 ⊖ 𝑝. We let 𝑥1 be a place
such that 𝑥1 ∈ 𝑁 ⊖ 𝑝 and 𝑥1 /∈ 𝑁 ′.

In both cases, there must be some 𝑥1 ∈ ∙𝑥0 such that 𝑥1 ∈ 𝑁 ⊖ 𝑝 and
𝑥1 /∈ 𝑁 ′. Repeating this construction then gives a sequence 𝑥1, 𝑥2, Since 𝑁
is finite, there must be 𝑥𝑖 = 𝑥𝑗 with 𝑖 ̸= 𝑗 in this sequence. Since 𝑥𝑛+1 ∈ ∙𝑥𝑛

for all 𝑛 ∈ N, we have by definition of the preset that (𝑥𝑛+1, 𝑥𝑛) ∈ 𝐹 . The
sequence 𝑥𝑖, . . . , 𝑥𝑗 would therefore be a cycle in the graph induced by the flow
relation, but this is not possible since 𝑁 is acyclic. Therefore we have arrived at
a contradiction and conclude that 𝑥0 ∈ 𝑁 ⊖′ 𝑝. Then we have that 𝑁 ⊖ 𝑝 ⊆ 𝑁 ′.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 40

Chapter 8 — Structural Branching Cells Method

This shows that 𝑁 ⊖ 𝑝 is the smallest subnet of 𝑁 closed under the rules.

As an example of dependence, consider again the net 𝑁 = (𝑃, 𝑇, 𝐹) in
Figure 8.1. A transition such as 𝑡4 is dependent on 𝑎 if one of the places in its
preset is dependent on 𝑎. The same does not hold for places, which are only
dependent on 𝑎 if all transitions in the preset are dependent on 𝑎. For this
net, the removal of the nodes dependent on 𝑎 give the net 𝑁 ⊖ 𝑎, shown in
Figure 8.4b.

𝑎

𝑑 𝑒

𝑡1 𝑡2

𝑡4 𝑡5 𝑡6

𝑔

𝑏

𝑐 𝑓

𝑡3 𝑡7

𝑡8

(a) The net from Figure 8.1 with all nodes 𝑥 ∈ 𝑃 ∪ 𝑇
dependent on 𝑎 shown in bold.

𝑔

𝑏

𝑐 𝑓

𝑡3 𝑡7

𝑡8

(b) The net 𝑁 ⊖ 𝑎.

The definition of ⊖ above could be a first step in generalising the s-cells
method to locally finite Petri nets. Consider for example the locally finite net
𝑁 in Figure 8.5. Following the definition of ⊖ in [5], 𝑁 ⊖ 𝑏 would remove the
entire net even though 𝑡1 can still be fired if 𝑏 is removed from the net. However,
following our definition, 𝑁 ⊖ 𝑏 only removes 𝑏, 𝑡2 and 𝑐.

𝑎 𝑏

𝑡1 𝑡2

𝑐

Figure 8.5: A locally finite Petri net

8.5 The Construction

With the definitions of s-cells and dynamic Petri nets in place, the construction
proposed by Bruni, Melgratti, and Montanari [5] can be explored. The final
construction consists of 3 steps:

1. first, a confusion-free dynamic Petri net is constructed using the s-cells;

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 41

Chapter 8 — Structural Branching Cells Method

𝑎

𝑡1 𝑡2

𝑑 𝑑

𝑡3 𝑡4 𝑡5

𝑏 𝑓 𝑔 ℎ

Figure 8.6: The running example for this section.

2. then, a confusion-free static Petri net constructed from the previously
obtained dynamic Petri net;

3. finally, the static net is pruned to simplify it.

In this section, the places that represent the “negative” information in the
net will be denoted by a bar: p1. Additionally, these places are typeset in bold
since they are persistent. The notation is extended for sets of places, so that
for a set 𝑃 of places, we denote by 𝑃 the set {𝑝 | 𝑝 ∈ 𝑃}.

For the rest of this section we assume that the input of the construction is
a finite occurrence net 𝑁 = (𝑃, 𝑇, 𝐹,𝑚).

Running example A running example will be used throughout this section
to illustrate the steps of the construction. The example is shown in Figure 8.6.
Note that the example has both asymmetric and symmetric confusion.

Step 1 From the input net 𝑁 , a dynamic net J𝑁K is constructed. The opera-
tion J·K is defined as follows.

Definition 8.9 (From s-cells to dynamic Petri nets). Let 𝑁 = (𝑃, 𝑇, 𝐹,𝑚) be
a marked occurrence net. Its dynamic p-net J𝑁K ∈ dn(𝑃 ∪P) is defined as

J𝑁K = (𝑇pos ∪ 𝑇neg,𝑚)

where

𝑇pos =
{︁
∘C →

(︁
∅, 𝜃∘ ∪ C∘ ∖ 𝜃∘

)︁ ⃒⃒⃒
C ∈ bc(𝑁) and 𝜃 : C

}︁
𝑇neg =

{︁
p →

(︁
𝑇 ′,C∘ ∖ (𝑁C ⊖ 𝑝)∘

)︁ ⃒⃒⃒
C ∈ bc(𝑁) and 𝑝 ∈ ∘C

and (𝑇 ′, 𝑏) = J𝑁C ⊖ 𝑝K
}︁

1Note that the bar does not denote set complement

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 42

Chapter 8 — Structural Branching Cells Method

The purpose of 𝑇pos is to add the flow of the s-cell to the new confusion-free
net. This means that a transition is created for every transaction 𝜃 in the cell,
with the initial places of the cell as its preset and the places marked at the end
of the transaction as its postset. Additionally, the negative places of the places
that are not marked at the end of the transaction are added to the postset.
These negative places will always be persistent.

The set 𝑇neg then further connects the negative places to each other. For
each initial place 𝑝 of C, we determine what final places of C cannot be reached
if the place 𝑝 is never marked, by recursively calling J𝑁C ⊖ 𝑝K. When 𝑁C ⊖ 𝑝
is empty, then the absence of a token at 𝑝 makes it impossible to fire the rest
of the cell, so the place has to be connected to all places in C∘. When C is
not empty, there is a subcell inside of the current cell which can be executed
without ever marking 𝑝. Therefore, p should be connected to each transaction
in J𝑁C ⊖ 𝑝K. Bruni, Melgratti, and Montanari [5, Cor. 3.13] have shown that
any net J𝑁K ∈ dn

(︀
𝑃 ∪P

)︀
is confusion-free.

Running example The s-cells of the running example are shown in Fig-
ure 8.7. We let C1 := [𝑡1] and C2 := [𝑡3]. We can treat every s-cell independently
and combine the dynamic nets by taking the union of the set of transitions.

𝑎

𝑡1 𝑡2

𝑐 𝑑

𝑡3 𝑡4 𝑡5

𝑏 𝑒 𝑓 𝑔

C1

C2

Figure 8.7: The s-cells C1 and C2 in the running example.

For the positive transitions from C1, we determine the transactions of C1:
{𝑡1} and {𝑡2}. For each of these transactions 𝜃 : C1 a transition

∘C1 →
(︁
∅, 𝜃∘ ∪ C∘

1 ∖ 𝜃∘
)︁

is created, such that

{𝑡1} gives {𝑎} → (∅, {𝑏} ∪ {c}),

{𝑡2} gives {𝑎} →
(︀
∅, {𝑐} ∪

{︀
b
}︀)︀

.

The resulting Petri net is shown in Figure 8.8a. Similarly, for the s-cell C2, the
transactions are {𝑡4} and {𝑡3, 𝑡5}. Therefore, the transitions in the net are

{𝑎, 𝑑} → (∅, {𝑓} ∪ {e,g}) and {𝑎, 𝑑} →
(︀
∅, {𝑒, 𝑔} ∪

{︀
f
}︀)︀

.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 43

Chapter 8 — Structural Branching Cells Method

This results in the Petri net in Figure 8.9a.
The negative connections in C1 are simple as well. Since {𝑎} = ∘C1, the

Petri net 𝑁C1
⊖ 𝑎 is empty and therefore J𝑁C1

⊖ 𝑎K = (∅, ∅). The transition
associated to a is then

{a} →
(︀
∅,
{︀
b, c

}︀)︀
.

Therefore, we get the Petri net shown in Figure 8.8b.
For C2, there are two initial places of 𝑁C2

: 𝑐 and 𝑑. For each of these places,
a transition is created. In the case of C2, the dynamic nets J𝑁C2

⊖ 𝑐K and
J𝑁C2 ⊖ 𝑑K are not empty. Consider the net J𝑁C2 ⊖ 𝑐K, which is

({𝑑 → (∅, {𝑔})}, ∅).

The transitions in this net are then activated by the transition associated with
c. The transition associated with c therefore becomes

{c} →
(︀
{{𝑑} → (∅, {𝑔})},

{︀
e, f

}︀)︀
.

Similarly, the transition associated with d is{︀
d
}︀
→

(︀
{{𝑐} → (∅, {𝑒})},

{︀
g, f

}︀)︀
.

We obtain the net shown in Figure 8.9b.
Combining the results of 𝑇pos and 𝑇neg for C1 and C2 then finally gives the

dynamic Petri net shown in Figure 8.10.

Step 2 In the second step, the dynamic Petri net is converted into a static net
using Definition 8.6 giving the net LJ𝑁KM. As shown by Bruni, Melgratti, and
Montanari [5, Cor. 3.14], any Petri net LJ𝑁KM is confusion-free. Furthermore,
for any dynamic Petri net 𝐷, the static net L𝑁M is 1-∞-safe if 𝐷 is 1-safe, so
LJ𝑁KM is 1-∞-safe [5, Cor. 2.5]. The Petri net LJ𝑁KM for the running example is
shown in Figure 8.11.

Step 3 Finally, the confusion-free net LJ𝑁KM can be pruned. Pruning is dis-
cussed, but not formalised in [5]. Below, we attempt to define an operation
that prunes as much as possible while leaving all places and transitions in the
original net 𝑁 . For all pruning operations in this section, we assume the input
to be a marked Petri net with persistent places 𝑁 = (𝑃 ∪P, 𝑇, 𝐹,𝑚).

First of all, the superfluous marked persistent places resulting from the L·M
operation are removed with the pruning operation

pruneL·M := 𝑁 ∖ (P ∩𝑚).

The marked persistent places are also in ∘𝑁 by construction of LJ𝑁KM. Also by
construction, there are no transitions such that ∙𝑡 ⊆ P ∪ 𝑚. The result will
not create confusion since it does not change the enabled transitions and the
conflicts between them.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 44

Chapter 8 — Structural Branching Cells Method

𝑎

𝑡1 𝑡2

𝑏 c b 𝑐

(a) 𝑇pos for s-cell C1.

a

b c

(b) 𝑇neg for s-cell C1.

Figure 8.8: Components of J𝑁K for the s-cell C1 from Figure 8.7.

𝑐 𝑑

𝑡4 {𝑡3,𝑡5}

e 𝑓 g 𝑒 f 𝑔

(a) 𝑇pos for s-cell C2.

c 𝑑

𝑡5

e f 𝑔

𝑐 d

𝑡3

𝑒 f g

(b) 𝑇neg for s-cell C2.

Figure 8.9: Components of J𝑁K for the s-cell C2 from Figure 8.7.

a 𝑎

𝑡1 𝑡2

c 𝑏 𝑑 𝑐 b d

𝑡5 𝑡4 {𝑡3,𝑡5} 𝑡3

g 𝑔 𝑓 f 𝑒 e

Figure 8.10: The complete dynamic Petri net J𝑁K for the running example
introduced in Figure 8.6.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 45

Chapter 8 — Structural Branching Cells Method

a 𝑎

𝑡1 𝑡2

c 𝑏 b 𝑑 𝑐 d

𝑡5 𝑡4 {𝑡3,𝑡5} 𝑡3

g 𝑔 𝑓 f 𝑒 e

Figure 8.11: The confusion-free unpruned Petri net LJ𝑁KM for the running ex-
ample introduced in Figure 8.6.

The second step in pruning is therefore to remove all nodes dependent on
empty initial persistent places. However, we cannot simply use the intersection
of 𝑁 ⊖ 𝑝 for each 𝑝 ∈ ∘𝑁 . To illustrate this, consider a net with two initial
places 𝑝 and 𝑞 that are not marked. Now a third place 𝑟 has two transitions in
its preset ∙𝑟 = {𝑡1, 𝑡2}, such that

𝑡1 ▷ 𝑝 ∧ ¬(𝑡1 ▷ 𝑞) ∧ 𝑡2 ▷ 𝑞 ∧ ¬(𝑡2 ▷ 𝑝).

Taking the intersection 𝑁 ⊖𝑝∩𝑁 ⊖ 𝑞 then does not remove 𝑟, since 𝑟 is in both
𝑁 ⊖ 𝑝 and 𝑁 ⊖ 𝑞, even though it cannot be marked.

Definition 8.10 (Extended dependence). We define the relation ▷ by recursion
as follows:

▷𝑜 := {(𝑥, 𝑆) | 𝑆 ⊆ 𝑃 ∪ 𝑇 ∧ 𝑥 ∈ 𝑆}
▷𝑛+1 := ▷𝑛 ∪ {(𝑝, 𝑆) | 𝑝 ∈ 𝑃 ∧ ∙𝑝 ̸= ∅ ∧ ∀𝑡 ∈ ∙𝑝 𝑡 ▷𝑛 𝑆}

∪ {(𝑠, 𝑆) | 𝑡 ∈ 𝑇 ∧ ∃𝑝 ∈ ∙𝑡 𝑝 ▷𝑛 𝑆}
▷ :=

⋃︁
𝑛∈N

▷𝑛,

A node 𝑥 ∈ 𝑃 ∪𝑇 is said to be dependent on the set of nodes 𝑆 ⊆ 𝑃 ∪𝑇 if 𝑥 ▷𝑆.

This definition is equivalent to Definition 8.7 for |𝑆| = 1. For a Petri net
𝑁 = (𝑃 ∪P, 𝑇, 𝐹) we then define the pruning operation

prune▷(𝑁) := 𝑁 ∖
{︀
𝑥 ∈ 𝑃 ∪ 𝑇

⃒⃒
𝑥 ▷

(︀∘𝑁 ∩P
)︀}︀

.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 46

Chapter 8 — Structural Branching Cells Method

Since prune▷ does not affect places that can be marked or transitions that
can be fired throughout the execution of the Petri net, the firing sequences are
preserved by this operation and no confusion is added.

Next, we note that final negative places, such as g in Figure 8.11, do not
serve a purpose. So we define a prune operation to remove all nodes that do
not affect normal places as follows:

prune⪯(𝑁) := 𝑁 ∖
{︀
𝑥 ∈ P ∪ 𝑇

⃒⃒
∀𝑝 ∈ 𝑃 ¬(𝑥 ⪯ 𝑝)

}︀
.

The only transitions that could be removed by prune⪯are the ones that do
not have a corresponding transition in the original net 𝑁 , because the ones that
do always have non-persistent places in their postset. This leaves the transitions
shown as empty boxes in Figure 8.11. These transitions have only a single place
in their preset (after the first pruning step) and they are the only transition in
the postset of that place. This place is therefore also removed. Conflict is then
not affected and neither are the firing sequences restricted to the transitions left
in the net. From this, we conclude that no confusion can be added.

Finally, consider the transition in the postset of c in Figure 8.11. After the
removal of g and f with prune⪯, this transition will have a single persistent
place in its preset and a single persistent place in its postset. Therefore, this
transition and the place in its postset can be removed by connecting c directly
to 𝑡5. To do so, we define a fourth prune operation using persistent chains.

Definition 8.11 (Chain). Let 𝑁 = (𝑃, 𝑇, 𝐹) be a Petri net with persistent
places. We call a chain a sequence (𝑥𝑛)1≤𝑛≤𝑘 with 𝑘 > 1 such that 𝑥1, 𝑥𝑘 ∈ 𝑃
and

∀1 ≤ 𝑖 < 𝑘 𝑥∙
𝑖 = {𝑥𝑖+1} ∧ {𝑥𝑖} = ∙𝑥𝑖+1.

Definition 8.12 (Persistent chain). A persistent chain is a chain such that all
places in the chain are persistent. We denote with Ch𝑁 the set of maximal
persistent chains in 𝑁 .

An example of a persistent chain is shown in Figure 8.12a. Using the set of
maximal persistent chains Ch𝑁 , we define the prune operation

pruneCh(𝑁) := (𝑃 ′, 𝑇 ′, 𝐹 ′′,𝑚),

where

(𝑃 ′, 𝑇 ′, 𝐹 ′) = 𝑁 ∖
{︁
𝑥𝑛

⃒⃒⃒
(𝑥𝑛)1≤𝑛≤𝑘 ∈ Ch𝑁 ∧𝑛 > 1

}︁
,

𝐹 ′′ = 𝐹 ′ ∪
{︁

(𝑥1, 𝑦) ∈ (𝑃 ′ × 𝑇 ′)
⃒⃒⃒

(𝑥𝑛)1≤𝑛≤𝑘 ∈ Ch𝑁 ∧ 𝑦 ∈ 𝑥∙
𝑘

}︁
.

This operation removes the chain, except for the first persistent place of the
chain and connects it to the postset of the last place in the chain. The result of
this operation on the persistent chain in Figure 8.12a is shown in Figure 8.12b.

Proposition 8.2. A sequence of transitions 𝜎 in a Petri net 𝑁 is a valid firing
sequence if and only if 𝜎 with the transitions in the chains in Ch𝑁 removed is
a valid firing sequence in pruneCh(𝑁).

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 47

Chapter 8 — Structural Branching Cells Method

Proof. Let 𝑁 be a Petri net containing a maximal persistent chain 𝐶 = (𝑥𝑖)1≤𝑖≤𝑝 ∈
Ch𝑁 with the set of transitions {𝑠1, . . . , 𝑠𝑛} and let 𝑁 ′ = (𝑃 ′, 𝑇 ′, 𝐹 ′′) be the
net obtained by removing 𝐶 from 𝑁 as follows:

(𝑃 ′, 𝑇 ′, 𝐹 ′) = 𝑁 ∖ {𝑥𝑖 | 𝑖 > 1}
𝐹 ′′ = 𝐹 ′ ∪

{︀
(𝑥1, 𝑦)

⃒⃒
𝑦 ∈ 𝑥∙

𝑝

}︀
Additionally, let {𝑝} = ∙𝑠1 and {𝑞} = 𝑠∙𝑛 and let 𝑝′ be the place corresponding
to 𝑝 in 𝑁 ′. Then (𝑝′)

∙
= 𝑞∙.

First note that if a firing sequence 𝜎 does not contain all transitions 𝑠1, . . . , 𝑠𝑛,
then firing 𝑠1, . . . , 𝑠𝑛 does not enable any transitions outside of the chain. There-
fore, 𝜎 with the transitions in 𝐶 removed is a valid firing sequence in 𝑁 .

Now take a firing sequence of 𝑁 containing all transitions 𝑠1, . . . , 𝑠𝑛:

𝑚0 −→* 𝑚1
𝑠1−→ 𝑚2 −→* 𝑚3

𝑠3−→ 𝑚4 −→* . . . −→* 𝑚𝑛.

Since 𝐶 is a chain, the transitions fired between 𝑠1 and 𝑠𝑛 must be concurrent
to 𝑠1, . . . , 𝑠𝑛. Therefore, this firing sequence is equivalent to

𝑚0 −→* 𝑚1
𝑠1···𝑠𝑛−−−−→ 𝑚′

𝑛+1 −→* 𝑚′
𝑛,

where 𝑚′
1 is the first marking where 𝑠1 is enabled. Call the transitions in this

sequence:
(𝑡1, . . . , 𝑡𝑘, 𝑠1, . . . , 𝑠𝑛, 𝑡𝑘+1, . . . , 𝑡𝑙).

We will prove that the sequence (𝑡1, . . . , 𝑡𝑘, 𝑡𝑘+1, . . . , 𝑡𝑙) is a valid firing sequence
in 𝑁 ′. Trivially, (𝑡1, . . . , 𝑡𝑘) is a valid firing sequence in 𝑁 ′. Firing 𝑡𝑘 in 𝑁 ′ will
then mark 𝑝′. Since (𝑝′)

∙
= 𝑞∙ and therefore the transitions in {𝑡𝑘+1, . . . , 𝑡𝑙}

are enabled as after firing (𝑡1, . . . , 𝑡𝑘, 𝑠1, . . . , 𝑠𝑛) in 𝑁 . Since the flow relation
restricted to 𝑡𝑘+1, . . . , 𝑡𝑙 is preserved, (𝑡1, . . . , 𝑡𝑘, 𝑠1, . . . , 𝑠𝑛, 𝑡𝑘+1, . . . , 𝑡𝑙) is a valid
firing sequence in 𝑁 ′.

Conversely, take any firing sequence (𝑡1, . . . , 𝑡𝑙) in 𝑁 ′. Let 𝑡𝑘+1 be the first
transition in the sequence such that 𝑡𝑘+1 ∈ (𝑝′)

∙
. If there is no such tran-

sition, then (𝑡1, . . . , 𝑡𝑙) is a firing sequence in 𝑁 . We will now prove that if
there is a 𝑡𝑘+1 ∈ (𝑝′)

∙
then (𝑡1, . . . , 𝑡𝑘, 𝑠1, . . . , 𝑠𝑛, 𝑡𝑘+1, . . . , 𝑡𝑙) is a valid firing

sequence in 𝑁 . It suffices to show that 𝑠1 is enabled after firing 𝑡𝑘 and does not
introduce conflict and that 𝑡𝑘+1 is enabled after firing 𝑠𝑛. In 𝑁 ′, the firing se-
quence (𝑡1, . . . , 𝑡𝑘) enables 𝑡𝑘+1, therefore 𝑝′ is marked after the firing sequence
(𝑡1, . . . , 𝑡𝑘). Hence, firing 𝑡1, . . . , 𝑡𝑘 in 𝑁 marks 𝑝. Since {𝑝} = ∙𝑠1, the transi-
tion 𝑠1 is therefore enabled. Furthermore, we have {𝑠1} = 𝑝∙, therefore 𝑠1 is not
in direct conflict with other transitions. Firing 𝑠1, . . . , 𝑠𝑛 then marks 𝑞. Again,
since (𝑝′)

∙
= 𝑞∙, the same transitions are enabled as after firing 𝑡1, . . . , 𝑡𝑘 in 𝑁 ′.

Therefore, (𝑡1, . . . , 𝑡𝑘, 𝑠1, . . . , 𝑠𝑛, 𝑡𝑘+1, . . . , 𝑡𝑙) is valid firing sequence in 𝑁 .
We repeat the same argument to remove all chains in Ch𝑁 . We then con-

clude by induction that a sequence of transitions 𝜎 in 𝑁 is a valid firing sequence
if and only if 𝜎 with the transitions in the chains in Ch𝑁 removed is a valid
firing sequence in pruneCh(𝑁).

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 48

Chapter 8 — Structural Branching Cells Method

Note that the proposition above implies that direct conflict is preserved, since
transitions 𝑎 an 𝑏 are in direct conflict if and only if for every firing sequence
(𝑡1, . . . , 𝑡𝑛, 𝑎) there does not exist a firing sequence (𝑡1, . . . , 𝑡𝑛, 𝑎, 𝑏). Therefore,
no confusion is introduced by the pruneCh(𝑁) operation.

(a) A maximal persistent chain is represented in the dashed box.

(b) The same maximal persistent chain after applying pruneCh.

Figure 8.12: A persistent chain and the result of pruning this chain.

With these four pruning operations in place, we define the combined pruning
operation as follows:

prune := pruneCh ∘prune⪯ ∘prune▷ ∘pruneL·M .

Running example Applying this operation to the running example, we ob-
tain the net prune(LJ𝑁KM) shown in Figure 8.13.

𝑎

𝑡1 𝑏 𝑡2

c 𝑑 𝑐

𝑡5 {𝑡3, 𝑡5} 𝑡4

𝑔 𝑒 𝑓

Figure 8.13: The net prune(LJ𝑁KM) for the running example.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 49

Chapter 8 — Structural Branching Cells Method

8.6 Attaching Probabilities

With the s-cells method, a probabilistic net can be created directly without
computing an event structure like with the branching cells method. Here, a
method given in [5] is briefly explored.

Given a finite acyclic Petri net, a probability PC is attached to every trans-
action in an s-cell C such that ∑︁

𝜃 :C
PC(𝜃) = 1.

Then these probabilities are applied to the net J𝑁K by setting the probabil-
ities for the transitions in 𝑇pos equal to the probabilities of the corresponding
transactions in 𝑁 and setting the probabilities for the transitions in 𝑇neg to 1.
We then note that the the nets LJ𝑁KM and J𝑁K have the same transitions, so the
probabilities on J𝑁K can directly be transferred to LJ𝑁KM.

Bruni, Melgratti, and Montanari [5] have shown that it is possible to choose
the probabilities PC such that they correspond to the probabilities in a Markov
net.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 50

Chapter 9

Conclusion

The s-cells method as defined in [5] is based on the assumption that the starting
Petri net is acyclic. Even though the branching cells method relies on many of
the same principles, it deals with cycles by only defining probabilities on the
unfolding of the net.

The results of this paper are mostly practical, as they assist in the imple-
mentation of the s-cells method. First, the fact that s-cells can be computed
as strongly connected components allows for the use of established algorithms.
Second, the formalisation of the pruning operations allows for smaller nets in
the output. A Python implementation of the s-cell method created using the
findings in this paper can be found at https://gitlab.com/tertsdiepraam/

petrinet.
Additionally, we have presented a definition of the removal of dependence

operator ⊖ based on the dependence relation ▷, which can be applied to locally
finite nets, but coincides with the definition in [5] in the case of acyclic nets.
This is a small first step in adapting the s-cells construction to locally finite
nets. Future work could investigate how the definition of s-cells and the rest of
the construction can be further adapted to locally finite nets.

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 51

https://gitlab.com/tertsdiepraam/petrinet
https://gitlab.com/tertsdiepraam/petrinet

Bibliography

[1] S. Abbes. “Probabilistic model for distributed and concurrent systems.
Limit theorems and application to statistical parametric estimation”. eng.
PhD thesis. IRISA-Université de Rennes 1, Oct. 2004.

[2] S. Abbes and A. Benveniste. “Branching Cells as Local States for Event
Structures and Nets: Probabilistic Applications”. eng. In: Foundations
of Software Science and Computational Structures. Ed. by V. Sassone.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 95–109. isbn:
978-3-540-31982-5.

[3] S. Abbes and A. Benveniste. “True-concurrency probabilistic models: Markov
nets and a law of large numbers”. eng. In: Theoretical Computer Science
390.2 (2008), pp. 129–170. issn: 0304-3975.

[4] F. Bause and P. Kritzinger. Stochastic Petri Nets – An Introduction to
the Theory. eng. Nov. 2013. isbn: 3-528-15535-3.

[5] R. Bruni, H. Melgratti, and U. Montanari. “Concurrency and Probabil-
ity: Removing Confusion, Compositionally”. eng. In: Logical Methods in
Computer Science 15 (4 Oct. 12, 2017). arXiv: 1710.04570.

[6] A. Einstein. “Zur Elektrodynamik bewegter Körper”. In: Annalen der
Physik 322.10 (1905), pp. 891–921. doi: 10.1002/andp.19053221004.

[7] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Commun. ACM 21.7 (July 1978), pp. 558–565. issn: 0001-
0782. doi: 10.1145/359545.359563.

[8] M. Nielsen, G. Plotkin, and G. Winskel. “Petri nets, event structures
and domains, part I”. eng. In: Theoretical Computer Science 13.1 (1981),
pp. 85–108. issn: 0304-3975.

[9] C. A. Petri. “Kommunikation mit Automaten”. ger. PhD thesis. Univer-
sität Hamburg, 1962.

[10] V. Sassone, M. Nielsen, and G. Winskel. “Models for concurrency: towards
a classification”. In: Theoretical Computer Science 170.1 (1996), pp. 297–
348. issn: 0304-3975. doi: 10.1016/S0304-3975(96)80710-9.

[11] R. Tarjan. “Depth-First Search and Linear Graph Algorithms”. In: SIAM
Journal on Computing 1.2 (1972), pp. 146–160. doi: 10.1137/0201010.

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 52

https://arxiv.org/abs/1710.04570
https://doi.org/10.1002/andp.19053221004
https://doi.org/10.1145/359545.359563
https://doi.org/10.1016/S0304-3975(96)80710-9
https://doi.org/10.1137/0201010

Bibliography

[12] D. Varacca, H. Völzer, and G. Winskel. “Probabilistic event structures
and domains”. eng. In: Theoretical Computer Science 358.2 (2006). Con-
currency Theory (CONCUR 2004), pp. 173–199. issn: 0304-3975. doi:
10.1016/j.tcs.2006.01.015.

[13] G. Winskel. “A new definition of morphism on Petri nets”. eng. In: STACS
84. Ed. by M. Fontet and K. Mehlhorn. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1984, pp. 140–150. isbn: 978-3-540-38805-0.

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 53

https://doi.org/10.1016/j.tcs.2006.01.015

Notation

Numbers

N natural numbers

N∞ natural numbers including infinity

Logical

∘ function composition

:= definition

∃ existential quantification

∀ universal quantification

Id identity relation

⇐⇒ bi-implication

=⇒ implication

R-1 inverse of the relation 𝑅

� domain restriction

∃! unique existential quantification

∨ or

∧ and

𝑅* transitive and reflexive closure

𝑅+ transitive and irreflexive closure

Sets

∖ set difference

∅ empty set

Removing Confusion in Locally Finite Petri Nets — Terts Diepraam 54

Notation

∈ membership

∩ intersection

⊂ / ⊆ strict subset / subset

× Cartesian product

∪ union

Petri nets

𝑝 negative place, page 42

conflict relation, page 14

#0 direct conflict relation, page 14

▷ dependence, page 39

∖ removal of nodes, page 12

𝒟∘ final places, page 2

∘𝒟 initial places, page 2

P set of persistent places, page 34

p persistent place, page 34

𝑝∙ postset, page 11

∙𝑝 preset, page 11

⪯ causality relation, page 12

𝑃 set of negative places, page 42

Event structures

[𝑒] smallest configuration containing 𝑒, page 20

[𝑒[smallest configuration enabling 𝑒, page 20

conflict relation, page 19

ℰ𝑣 future of the configuration 𝑣, page 20

2 causality relation, page 19

#𝜇 immediate conflict relation, page 20

𝒱ℰ finite configurations of ℰ , page 20

Ωℰ maximal configurations of ℰ , page 20

Removing Confusion in Locally Finite Petri Nets – Terts Diepraam 55

	Introduction
	Preliminaries
	Relations, Orders and Graphs
	Probability

	Concurrency
	Models of Concurrency
	Concurrency in Physics

	Petri Nets
	Preliminaries on Petri Nets
	Occurrence Nets
	Unfolding

	Event Structures
	Preliminaries on Event Structures
	From Petri Nets to Event Structures
	Confusion in Event Structures
	Locally Finite Event Structures

	Randomizing Confusion-Free Event Structures
	Probabilistic Event Structures
	Confusion in Probabilistic Event Structures

	Branching Cells Method
	Branching Cells
	Locally Randomised Event Structures
	Markov Nets

	Structural Branching Cells Method
	Persistent Places
	Structural Branching Cells
	Dynamic Petri Nets
	Dependence
	The Construction
	Attaching Probabilities

	Conclusion
	Bibliography
	Notation

